EBK THERMODYNAMICS: AN ENGINEERING APPR
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3.8, Problem 82P

Determine the specific volume of superheated water vapor at 15 MPa and 350°C using (a) the ideal-gas equation, (b) the generalized compressibility chart, and (c) the steam tables. Also determine the error involved in the first two cases.

(a)

Expert Solution
Check Mark
To determine

The specific volume of superheated water vapour based on the ideal gas equation.

The error involved.

Answer to Problem 82P

The specific volume of superheated water vapour based on the ideal gas equation is 0.01917m3/kg_.

The error involved is 67.0%_.

Explanation of Solution

Write the equation of specific volume of superheated water using ideal gas equation of state.

v=RTP (I)

Here, gas constant is R, pressure and temperature of R-134a are P and T respectively.

Calculate the percentage of error involved.

Error=vcalculatedv@15MPa,350°Cv@15MPa,350°C×100% (II)

Here, specific volume at pressure and temperature of 15 MPa and 350°C is v@15MPa,350°C.

Conclusion:

Refer to Table A-1, obtain the gas constant, R of water as 0.4615kPam3/kgK.

Substitute 0.4615kPam3/kgK for R, 350°C for T, and 15 MPa for P in Equation (I).

v=(0.4615kPam3/kgK)(350°C)15MPa=(0.4615kPam3/kgK)(350+273)K15MPa×103kPaMPa=0.01917m3/kg

Thus, the specific volume of superheated water vapour based on the ideal gas equation is 0.01917m3/kg_.

Refer to Table A-6, obtain the value of v@15MPa,350°C at pressure and temperature of 15 MPa and 350°C as 0.011481m3/kg.

Substitute 0.01917m3/kg for vcalculated and 0.011481m3/kg for v@15MPa,350°C in Equation (II).

Error=0.01917m3/kg0.011481m3/kg0.011481m3/kg×100%=67.0%

Thus, the error involved is 67.0%_.

(b)

Expert Solution
Check Mark
To determine

The specific volume of superheated water vapour based on the generalized compressibility chart.

The error involved.

Answer to Problem 82P

The specific volume of superheated water vapour based on the generalized compressibility chart is 0.01246m3/kg_.

The error involved is 8.5%_.

Explanation of Solution

Calculate the reduced pressure.

PR=PPcr (III)

Here, pressure of superheated water vapour is P and critical pressure is Pcr

Calculate the reduced temperature.

TR=TTcr (IV)

Here, temperature of superheated water vapor is T and critical temperature is Tcr

Calculate the specific volume of superheated water vapour based on the generalized compressibility chart.

v=Zvideal (V)

Here, the specific volume at ideal condition is videal.

Conclusion:

Refer to Table A-1, obtain the critical pressure and critical temperature of water.

Pcr=22.06MPaTcr=647.1K

Substitute 22.06 MPa for Pcr and 15 MPa for P in Equation (III).

PR=15MPa22.06MPa=0.679

Substitute 647.1 K for Tcr and 350°C for T in Equation (IV).

TR=350°C647.1K=(350+273)K647.1K=0.962

Refer to figure A-15, “The compressibility chart”, obtain the compressibility factor, Z by reading the calculated reduced pressure and reduced temperature as 0.65.

Substitute 0.65 for Z and 0.01917m3/kg for videal in Equation (V).

v=(0.65)(0.01917m3/kg)=0.01246m3/kg

Thus, the specific volume of superheated water vapour based on the generalized compressibility chart is 0.01246m3/kg_.

Substitute 0.01246m3/kg for vcalculated and 0.011481m3/kg for v@15MPa,350°C in Equation (II).

Error=0.01246m3/kg0.011481m3/kg0.011481m3/kg×100%=8.5%

Thus, the error involved is 8.5%_.

(c)

Expert Solution
Check Mark
To determine

The specific volume of superheated water vapour based on the data from tables.

Answer to Problem 82P

The specific volume of superheated water vapour based on the data from table is 0.01148m3/kg_.

Explanation of Solution

Refer to Table A-6, obtain the specific volume at pressure and temperature of 15 MPa and 350°C as 0.01148m3/kg.

Thus, the specific volume of superheated water vapour based on data from steam tables is 0.01148m3/kg_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Continuity equation A y x dx D T معادلة الاستمرارية Ly X Q/Prove that ди хе + ♥+ ㅇ? he me ze ོ༞“༠ ?
Q Derive (continuity equation)? I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).

Chapter 3 Solutions

EBK THERMODYNAMICS: AN ENGINEERING APPR

Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - What is quality? Does it have any meaning in the...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - Prob. 19PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 21PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 26PCh. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - Prob. 30PCh. 3.8 - 3–31 10-kg of R-134a fill a 1.348-m3 rigid...Ch. 3.8 - Prob. 32PCh. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - Prob. 34PCh. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - Prob. 36PCh. 3.8 - 3–37E One pound-mass of water fills a 2.4264-ft3...Ch. 3.8 - Prob. 38PCh. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 - 3–44 Saturated steam coming off the turbine of a...Ch. 3.8 - Prob. 45PCh. 3.8 - Prob. 46PCh. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 - 3–53E A 5-ft3 rigid tank contains 5 lbm of water...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - Prob. 57PCh. 3.8 - 3–58 A rigid tank contains water vapor at 250°C...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Prob. 61PCh. 3.8 - 3–62 A rigid vessel contains 8 kg of...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - Prob. 66PCh. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - Prob. 69PCh. 3.8 - Prob. 70PCh. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - Prob. 74PCh. 3.8 - Prob. 75PCh. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - Prob. 77PCh. 3.8 - Prob. 78PCh. 3.8 - Prob. 79PCh. 3.8 - Prob. 80PCh. 3.8 - Prob. 81PCh. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Prob. 85PCh. 3.8 - Prob. 86PCh. 3.8 - Prob. 87PCh. 3.8 - Prob. 88PCh. 3.8 - Prob. 89PCh. 3.8 - Prob. 90PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Prob. 95PCh. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 102PCh. 3.8 - Prob. 103PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 105PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Prob. 108RPCh. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - Prob. 114RPCh. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Prob. 116RPCh. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - Prob. 120RPCh. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 123RPCh. 3.8 - Prob. 124RPCh. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - Prob. 131RPCh. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 134FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 136FEPCh. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - Prob. 139FEPCh. 3.8 - Consider a sealed can that is filled with...Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY