Concept explainers
(a)
To show: The acceleration of the particle in the
(a)
Answer to Problem 54CP
The acceleration of the particle in the
Explanation of Solution
The formula to calculate the relative momentum is,
Here,
The formula to calculate the force on the electric charge is,
Here,
The formula to calculate the Force due to motion is,
The force on the electric charge due to motion must be equal to that of the force due to electric field.
Substitute
Substitute
Further solve the above equation.
The formula to calculate the acceleration is,
Substitute
Conclusion
Therefore, the acceleration of the particle in the
(b)
The significance of the dependence of the acceleration on the speed.
(b)
Answer to Problem 54CP
The significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the
Explanation of Solution
The formula to calculate the acceleration of the charge is,
As the speed of charge approaches to the speed of light, the acceleration approaches to zero.
When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.
So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.
Conclusion
Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.
(c)
The speed and the position of the charge particle at time
(c)
Answer to Problem 54CP
The speed of the charge particle at time
Explanation of Solution
The formula to calculate the acceleration of the charge is,
Integrate the above equation from velocity
Thus the speed of the particle at time
The formula to calculate the position of the particle is,
Substitute
Integrate the above equation from position
Conclusion
Therefore, the speed of the charge particle at time
Want to see more full solutions like this?
Chapter 38 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- Can you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- No chatgpt pls will upvotearrow_forwardThe shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forward
- The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning