Concept explainers
(a)
To show: The acceleration of the particle in the
(a)
Answer to Problem 54CP
The acceleration of the particle in the
Explanation of Solution
The formula to calculate the relative momentum is,
Here,
The formula to calculate the force on the electric charge is,
Here,
The formula to calculate the Force due to motion is,
The force on the electric charge due to motion must be equal to that of the force due to electric field.
Substitute
Substitute
Further solve the above equation.
The formula to calculate the acceleration is,
Substitute
Conclusion
Therefore, the acceleration of the particle in the
(b)
The significance of the dependence of the acceleration on the speed.
(b)
Answer to Problem 54CP
The significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the
Explanation of Solution
The formula to calculate the acceleration of the charge is,
As the speed of charge approaches to the speed of light, the acceleration approaches to zero.
When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.
So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.
Conclusion
Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.
(c)
The speed and the position of the charge particle at time
(c)
Answer to Problem 54CP
The speed of the charge particle at time
Explanation of Solution
The formula to calculate the acceleration of the charge is,
Integrate the above equation from velocity
Thus the speed of the particle at time
The formula to calculate the position of the particle is,
Substitute
Integrate the above equation from position
Conclusion
Therefore, the speed of the charge particle at time
Want to see more full solutions like this?
Chapter 38 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- A positively charged ball falls vertically along the lines of a uniform electric field. The weight of the ball is larger than the electric force. The air drag force, exerted on the ball, is directly proportional to its speed. The mass and charge of the ball are equal to 0.46 kg and 0.22 C. The magnitude of the electic field is 5 V/m. Determine the ratio v1/v2, where v1 and v2 are the speeds of steady (i.e., constant speed) motion when the electric field vector is oriented downwards and upwards, respectively.arrow_forwardCan u solve thisarrow_forwardYou are asked to consult for the city's research hospital, where a group of doctors is investigating the bombardment of cancer tumors with high-energy ions. The ions are fired directly toward the center of the tumor at speeds of 5.0 x 10°m/s. To cover the entire tumor area, the ions are deflected sideways by passing them between two charged metal plates that accelerate the ions perpendicular to the direction of their initial motion. The acceleration region is 5.0cm long, and the ends of the acceleration plates are 1.5m from the patient. Target Acceleration plates Ion 5.0 cm 1.5 m a. What sideways acceleration (between the plates) is required to deflect an ion 2.0 cm to one side? b. What is the horizontal speed of the ion as it leaves the metal plates? c. What is the vertical speed of the ion as it leaves the metal plates? O 6.6 x 10 m/s O 2.5 x 104m/s O 4.0 x 10-2m/s O 1.3 x 10 m/sarrow_forward
- 1) A proton (p) and electron (e-) are released when they are 4 Å (4 Angstroms). Find the initial accelerations of each particle, from one of the selections below. a) a(p) = 8.63 x 1017 m/s2, a(e-) = 1.58 x 1021 m/s2; b) a(p) = 3.4 x 1018 m/s2, a(e-) = 6.3 x 1021 m/s2; c) a(p) = 4.315 x 1016 m/s2, a(e-) = 7.9 x 1020 m/s2; d) a(p) = 3.45 x 1018 m/s2, a(e-) = 6.32 x 1021 m/s2. 1) Two small spheres are placed a distance 20 cm apart and have equal charge. How many excess electrons must be placed on each sphere if the magnitude of the Coulomb repulsive force is F = 3.33 x 10-21 N? a) 2 x 103; b) 350; c) 760; d) 1.2 x 103. 3)Three individual point charges are placed at the following positions in the x-y plane: Q3 = 5.0 nC at (x, y) = (0,0); Q2 = -3.0 nC at (x, y) = (4 cm, 0); and Q1 = ? nC at (x, y) = (2 cm,0); What is the magnitude, and sign, of charge Q1 such that the net force exerted on charge Q3, exerted by charges Q1 and Q2, is zero? a) Q1 = + 0.5 nC; b) Q1 = - 0.25 nC; c) Q1 = +…arrow_forwardA positively charged particle of mass 1.92 x 10-27 kg initially moves left to right long the x axis at a speed of 4.02 x 103 m/s. It moves into an electric field, which points in the negative x direction, and travels a distance of 0.41 m before coming to rest. What acceleration magnitude does the particle experience? (Ignore gravity) Round your answer to 2 decimal places.arrow_forwardYou are asked to consult for the city’s research hospital, where a group of doctors is investigating the bombardment of cancer tumors with high-energy ions. The ions are fired directly toward the center of the tumor at speeds of 5.0×10^6m/s. To cover the entire tumor area, the ions are deflected sideways by passing them between two charged metal plates that accelerate the ions perpendicular to the direction of their initial motion. The acceleration region is 5.0cm long, and the ends of the acceleration plates are 1.5m from the patient. What is the horizontal speed of the ion as it leaves the metal plates?arrow_forward
- In an experiment in space, one proton is held fixed and another proton is released from rest a distance of 2.50 mm away. What is the initial acceleration of the proton after it is released? a) 2.5x104 m/s? 1.2x104 m/s? 3.0x104 m/s? 2.0x104 m/s? 2.2x104 m/s2 Boş bırakarrow_forwardNewer automobiles have filters that remove fine particles from exhaust gases. This is done by charging the particles and separating them with a strong electric field. Consider a positively charged particle +4.7 µC that enters an electric field with strength 6 ✕ 106 N/C. The particle is traveling at 21 m/s and has a mass of 10−9 g. a) What is the acceleration of the particle? (Enter the magnitude only.) b) What is the direction of the acceleration of the particle relative to the electric field?arrow_forwardAt some instant the velocity components of an electron moving between two charged parallel plates are vx = 1.5 * 10^5 m/s and vy =3.0 * 10^3 m/s. Suppose the electric field between the plates is uniform and given by E: = (120 N/C)jˆ . In unit-vector notation, what are (a) the electron’s acceleration in that field and (b) the electron’s velocity when its x coordinate has changed by 2.0 cm?arrow_forward
- Electric force in the Hydrogen atom. In a hydrogen atom the separation between the proton and the electron is 5.3×10−11m, Compute the magnitude of the attractive force of attraction on the electron by the protonarrow_forwardShown are the configuration of a gel electrophoresis experiment. Charged plates establish an electric field on a region of gel between the plates. A solution of DNA fragments, which acquire a negative charge in solution, is analyzed by using an electric field to drive the fragments through the gel. A drag force opposes the motion, causing the fragments to move at a constant speed. Larger fragments move more slowly, so the fragments separate by size to give a “fingerprint” of the sample. The fragments move in the direction of _________ electric potential and __________ electric potential energy.A. higher, higherB. higher, lowerC. lower, higherD. lower, lowerarrow_forwardA charged particle q1 = 7.00 C is located at the origin and a charged particle q2 = -5.00 C is located at (0.300 m, 0). What is the net electric field (unit-vector notation, magnitude, direction) at a point P located at (0, 0.400 m)? What is the net electric force (unit-vector notation, magnitude, direction) on a charged particle q3 = -3.00 C located at P?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning