Concept explainers
A particle with electric charge q moves along a straight line in a uniform electric field
(b) Discuss the significance of the dependence of the acceleration on the speed. (c) What If? If the particle starts from rest it x = 0 at t = 0, how would you proceed to find the speed of the particle and its position at time t?
(a)

To show: The acceleration of the particle in the
Answer to Problem 54CP
Explanation of Solution
The formula to calculate the relative momentum is,
Here,
The formula to calculate the force on the electric charge is,
Here,
The formula to calculate the Force due to motion is,
The force on the electric charge due to motion must be equal to that of the force due to electric field.
Substitute
Substitute
Further solve the above equation.
The formula to calculate the acceleration is,
Substitute
Conclusion
Therefore, the acceleration of the particle in the
(b)

Answer to Problem 54CP
Explanation of Solution
The formula to calculate the acceleration of the charge is,
As the speed of charge approaches to the speed of light, the acceleration approaches to zero.
When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.
So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.
Conclusion
Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.
(c)

Answer to Problem 54CP
Explanation of Solution
The formula to calculate the acceleration of the charge is,
Integrate the above equation from velocity
Thus the speed of the particle at time
The formula to calculate the position of the particle is,
Substitute
Integrate the above equation from position
Conclusion
Therefore, the speed of the charge particle at time
Want to see more full solutions like this?
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning





