Concept explainers
(a)
The equation for u
from the given equation.
(a)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
The equation for the kinetic energy is given as,
Here,
Rearrange the above equation for
Let us assume
Further solve the equation.
Replace
Conclusion:
Therefore, the equation for
(b)
The minimum possible value of speed and corresponding kinetic energy.
(b)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
From the above expression all the term is positive as well as the expression contains only positive sign so the minimum possible value that the speed can have according to the above expression is zero.
At zero speed the corresponding value of kinetic energy is also zero.
Conclusion:
Therefore, the minimum possible value of speed can be zero and corresponding kinetic energy will also be zero.
(c)
The maximum possible value of speed and corresponding kinetic energy.
(c)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
The maximum value of speed is equal to the speed of light according to relativistic concept if the speed becomes more than the speed of light then its energy become unstable that would not exist practically.
At this speed of light, the kinetic energy increases without any limit.
Conclusion:
Therefore, the maximum possible value of speed can be speed of light and corresponding kinetic energy will increases without any limit.
(d)
The equation for the acceleration of the particle as a function of kinetic energy and power input.
(d)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (1), the expression for the speed is given as,
Write the expression for the acceleration of a particle.
Substitute
Replace
Substitute
Conclusion:
Therefore, the equation for the acceleration of the particle as a function of kinetic energy and power input is
(e)
The limiting form of the expression in part (d) at low energy and compare with the non-relativistic expression.
(e)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At low energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at low energy is
(f)
The limiting form of the expression in part (d) at high energy and compare with the non-relativistic expression.
(f)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At high energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at high energy is
(g)
The reason that answer to part (f) help account for the answer to part (c) at constant input power.
(g)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From the answer of part (f) the expression for the acceleration is,
Here,
In part (c), the speed at high energy approaches to the speed of light. But from the acceleration equation if the energy is imparted to the particle at constant input power the acceleration is steeply decreases because the acceleration is inversely proportional to the cube root of the kinetic energy. So at high energy acceleration is very less and the velocity of the particle approaches to a constant value as indicate in part (c).
Conclusion:
Therefore, the acceleration of the particle is very less at high energy that gives the velocity of the particle a constant value.
Want to see more full solutions like this?
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Determine the equivalent capacitance for the group of capacitors in the drawing. Assume that all capacitors be the same where C = 24.0 µF. Thank you.arrow_forwardIn the figure below, what is the net resistance of the circuit connected to the battery? Assume that all resistances in the circuit is equal to 14.00 kΩ. Thank you.arrow_forwardDue to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations. 3 4 Find the currents flowing in the circuit in the figure below. (Assume the resistances are R₁ =6, R₂ = 20, R₂ = 10 N, R₁ = 8, r₁ = 0.75 0, r2=0.50, 3 × A × A I, = 3.78 12 13 = 2.28 = 1.5 × A R₁ b a R₁₂ w C 1, 12 13 R₂ E3 12 V E₁ 18 V g Ez 3.0 V 12 Ea شرة R₁ e 24 V d = 0.25 0, and 4 = 0.5 0.)arrow_forward
- In the circuit shown below Ɛ = 66.0 V, R5 = 4.00 £2, R3 = 2.00 N, R₂ = 2.20 N, I5 = 11.41 A, I = 10.17 A, and d I₁ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this problem, do not use rounded intermediate values—including answers submitted in WebAssign-in your calculations.) 12 = 8.12 A RA = -1.24 Based on the known variables, which two junctions should you consider to find the current I3? A 9.59 Which loop will give you an equation with just R₁ as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? 6.49 Which loop will give you an equation with just R as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? N R₁ ww R₂ www R4 ww 14 15 www R5 www R3arrow_forwardCertain types of particle detectors can be used to reconstruct the tracks left by unstable, fast-moving sub-atomic particles. Assume that a track with a length of L=2.97 mm in the laboratory frame of reference has been observed. Further assume that you determined from other detector data that the particle moved at a speed of L=0.910 ⚫ c, also in the laboratory frame of reference. c denotes the speed of light in vacuum. What proper lifetime would you determine for this particle from the data given? T= 4.0 Sarrow_forwardgenerated worksheetarrow_forward
- While cruising down University Boulevard you are stopped by a cop who states that you ran a red traffic light. Because you don't want to pay the stiff fine, you are attempting a physics defense. You claim that due to the relativistic Doppler effect, the red color of the light λ=616 nm appeared green '=531 nm to you. The cop makes a quick calculation of his own and rejects your defense. How fast, in terms of your speed u divided by the speed of light in vacuum c, would you have to drive to justify your claim? Note that the speed u is taken to be a positive quantity. U 4.0 Carrow_forward220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forward220 volts is supplied across 1200 winding of the primary coil of the autotransformer.If 1650 windings are tapped, what voltage will be supplied to the primary coil of thehigh-voltage transformer?2. A kVp meter reads 86 kVp and the turns ratio of the high-voltage step-up transformeris 1200. What is the true voltage across the meter?3. The supply voltage from the autotransformer to the filament transformer is 60 volts. If theturns ratio of the filament transformer is 1/12, what is the filament voltage?4. If the current in the primary side of the filament transformer in question 3 were 0.5 A,what would be the filament current?5. The supply to a high-voltage step-up transformer with a turns ratio of 550 is 190 volts.What is the voltage across the x-ray tube?arrow_forward
- 220 V is supplied to 800 primary turns of an autotransformer. What will the outputvoltage be across 200 secondary turns? 2. A filament transformer has a turns ratio of 1:20. What current must be supplied to theprimary windings if 5 A is required by the filament? 3. The filament transformer in the previous question is supplied with 150 V to theprimary side. What is the secondary voltage? 4. 440 V is supplied to 1000 primary turns of an autotransformer. If the desired outputvoltage is 100 V how many secondary turns must be tapped?arrow_forwardPlease solve and answer thw question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning