Concept explainers
(a)
The width of aperture.
(a)
Answer to Problem 4P
The width of aperture is
Explanation of Solution
On looking at the figure P38.4, width of the rectangular patch is more than that of its height.
Write the equation for tangent of angular width of aperture.
Here,
Since
Write the relation between width of aperture and the wavelength of light used for first order diffraction pattern.
Here,
Conclusion:
Substitute
Substitute
Rewrite the above expression in terms of
Therefore, the width of aperture is
(b)
The height of aperture.
(b)
Answer to Problem 4P
The height of aperture is
Explanation of Solution
On looking at the figure P38.4, width of the rectangular patch is more than that of its height.
Write the equation for tangent of angular width of aperture.
Here,
Since
Write the relation between width of aperture and the wavelength of light used for first order diffraction pattern.
Here,
Conclusion:
Substitute
Substitute
Rewrite the above expression in terms of
Therefore, the height of aperture is
(c)
Check whether the horizontal or vertical dimension of central bright portion is greater.
(c)
Answer to Problem 4P
Horizontal dimension of central bright portion is longer than its vertical dimension.
Explanation of Solution
Draw the diagram showing the diffraction pattern on light passing through a circular aperture.
From the diagram, it can be seen that the central bright patch has an ellipse shape. It has greater length in horizontal direction than in vertical direction.
Therefore, the horizontal dimension of central bright portion is longer than its vertical dimension.
(d)
Check whether the horizontal or vertical dimension of aperture is greater.
(d)
Answer to Problem 4P
Vertical dimension of aperture is greater.
Explanation of Solution
Refer the diagram shown in part (c). From the diagram, it is understood that to obtain diffraction pattern with greater horizontal dimension its vertical length, the vertical length of aperture must be greater than that of horizontal length. If the horizontal dimension of aperture is greater, the vertical dimension of bright becomes greater than that of the horizontal dimension.
Therefore, the vertical dimension of aperture is greater.
(e)
Identify the relation between the two rectangles given in question with the help of a diagram.
(e)
Answer to Problem 4P
The distances between edges of rectangular aperture is inversely proportional to size of central maxima rectangle on the wall.
Explanation of Solution
Refer the figure 1shown in part (c). The size of aperture is inversely proportional to the size of diffraction pattern. Smaller the size of aperture, larger will be the size of diffraction pattern. It is found that the width of aperture is
Therefore, the distances between edges of rectangular aperture is inversely proportional to size of central maxima rectangle on the wall.
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill