Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 49P
To determine
The time taken for the radon activity to drop below the action limit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thyroid cancer patient is given a dosage of 131I (half-life = 8.1 d). What fraction of the dosage of 131I will still be in the patient's thyroid after 72.9 days? (Let N0 and Nf represent the initial dose and the amount left after 72.9 days, respectively. Enter your answer as a fraction.)
✓
ON
"O
2.75 MeV
0.511 MeV
0.511 MeV
B, E= 1.73 MeV
Eave = 0.721 Mev
O MeV
You are using a Cs-137 radiation source with an "activity" level of 5 μCi that emits primarily beta particles with energy 0.5120 MeV. Use the equation given to calculate the total beta-radiation exposure you would experience in 3 hours of lab work with this radioactive source.
(H) is the equivalent dose rate in mrem/hr, (A) is the activity of the sample in Ci, (E) is the energy of the emitted radiation in eV, and (r) is the average distance from the source during the exposure in meters. To find the radius, use a reasonable distance - as if you were working with an experimental apparatus and radioactive sources in person during these three hours (how far, on average, would you be from the source during that time?). For comparison, you would be exposed to approximately 3.5 millirems if you were to fly from the east coast to the west coast of the US.
Chapter 38 Solutions
Essential University Physics
Ch. 38.1 - Prob. 38.1GICh. 38.2 - Prob. 38.2GICh. 38.3 - Prob. 38.3GICh. 38.4 - Prob. 38.4GICh. 38.5 - Prob. 38.5GICh. 38 - Prob. 1FTDCh. 38 - Prob. 2FTDCh. 38 - Prob. 3FTDCh. 38 - Prob. 4FTDCh. 38 - Why are iodine-131 and strontium-90 particularly...
Ch. 38 - Prob. 6FTDCh. 38 - Prob. 7FTDCh. 38 - Prob. 8FTDCh. 38 - Prob. 9FTDCh. 38 - Prob. 10FTDCh. 38 - Three radon isotopes have 125, 134, and 136...Ch. 38 - Prob. 12ECh. 38 - Prob. 13ECh. 38 - Prob. 14ECh. 38 - Prob. 15ECh. 38 - How many half-lives will it take for the activity...Ch. 38 - Prob. 17ECh. 38 - Prob. 18ECh. 38 - Prob. 19ECh. 38 - Prob. 20ECh. 38 - Prob. 21ECh. 38 - Find the total binding energy of oxygen-16, given...Ch. 38 - Determine the nuclear mass of nickel-60, given...Ch. 38 - Prob. 24ECh. 38 - Prob. 25ECh. 38 - Prob. 26ECh. 38 - Prob. 27ECh. 38 - Prob. 28ECh. 38 - Prob. 29ECh. 38 - Prob. 30ECh. 38 - Prob. 31ECh. 38 - Prob. 32ECh. 38 - Prob. 33ECh. 38 - Prob. 34ECh. 38 - Prob. 35ECh. 38 - Prob. 36ECh. 38 - Prob. 37ECh. 38 - Prob. 38ECh. 38 - Prob. 39ECh. 38 - Prob. 40ECh. 38 - Prob. 41ECh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Iron-56, with nuclear mass 55.9206 u, is among the...Ch. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Nitrogen-13 is a 9.97-min-half-lifc isotope used...Ch. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - The table below lists reported levels of...Ch. 38 - Prob. 56PCh. 38 - Analysis of a Moon rock shows that 82% of its...Ch. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Bismuth-209 and chromium-54 combine to form a...Ch. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PPCh. 38 - Prob. 87PPCh. 38 - Prob. 88PPCh. 38 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardSuppose one load irradiation plant uses a 137Cs source while another uses an equal activity of 60Co. Assuming equal fractions of the (rays from the sources are absorbed, why is more time needed to get the same dose using me 137Cs source?arrow_forwardAn iodine isotope with a first order nuclear decay rate has a half life of 8 days. (time for half the radiation to disappear) If a persons thyroid receives a 12,000 cpm dose of radiation (counts per minute); how many days does it take to reach a safe level of 2,000 cpm? ln [A0]/[At] = 0.693/t1/2 t t=time of interest t1/2 = half life Ao = original concentration At = concentration at time of t ln = 2.303 log 10arrow_forward
- In a nuclear medicine scan with 99mTc (t/2 = 6hrs), the signal-to-noise ratioImage size for a 30 min scan was 50: 1 with an injected radioactive dose of1 mCi (3.7x107 decays per second). Assume images startedimmediately after injection. If the scan time was doubled to 60minutes with a starting dose of 1 mCi, what would the SNR value of the image now be?arrow_forwardTechnetium-99 m has a half life of 4.8 hours. If a patient receives a dose with an activity of 60.2 mCi of Technetium 99 for cardiac imaging how much radioactivity will be left in the patients body 48 hours after injection?arrow_forwardA radiation worker stands 35 cm away from a radioactive source of 30 mCi (11.1 GBq) 9mTc (k, for 99mTc is 0.80 R-cm/mCi-hr at 1 cm or 18.0 µGy-m?/ GBq-hr at 1 m). Calculate the exposure value received by the worker while standing for 1 hr near the source. The isotop half-life is 6 hours.arrow_forward
- A radioactive contaminant gives an unfortunate 0.5 kg lab rat a dose of 1500 rem in just 1 minute. Assuming that the half life of the radioactive isotope in the contaminant is much longer than1 minute, what would the activity (in Bq) of the contaminant be if the contaminant is a 1.1MeV beta emitter?arrow_forwardThe remnants of an ancient fire in a cave in Africa showed a 1C decay rate of 3.9 counts per minute per gram of carbon. If the decay rate in C-14 in freshly cut wood, is 13.6 counts per minute per gram of carbon, how many years ago did the campfire occur?arrow_forwardThe charred bones of a sloth in a cave in Chile represent the earliest evidence of human presence at the southern tip of South America. A sample of the bone has a specific activity of 5.22 disintegrations per minute per gram of carbon (d/min*g). If the 12Cy14C ratio for living organisms results in a specific activity of 15.3 d/min*g, how old are the bones (t1/2 of 14C = 5730 yr)?arrow_forward
- How many Gy of exposure is needed to give a canceroustumor a dose of 40 Sv if it is exposed to α activity?arrow_forwardQuestion 12.arrow_forwardA sample of radioactive material is obtained from a very old rock. The activity of the rock over a period of time is monitored, and lnA is plotted as a function of t such as in Figure (b). The slope of the line has a value of -6.1 ×10^−8y^−1. FInd the half-life in years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College