Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 38, Problem 49AP
(a)
To determine
The total energy of an electron.
(b)
To determine
The kinetic energy of the electron.
(c)
To determine
The momentum of the electron.
(d)
To determine
The angle between the shock wave and the electron’s direction of motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A certain star is 15.6 million light-years from Earth. The intensity of the light that reaches Earth from the star is 2.90 × 10−21 W/m2. At what rate does the star radiate EM energy?
A large container which has 258 g of water initially at 23 °C is placed in a microwave oven. The magnetron in the microwave oven can produce 950 W of EM radiation. The microwave is turned on for 2.5 minutes.
Assuming that all the microwave energy is absorbed by the water, how much water is left in the container?
2. The OXO 8716900 electric kettle (1500 W) manufacturer’s claim that it can boil up to 1.75 L of water faster than the microwave, safer than the stovetop, and runs off a mains voltage of 120 V. Compare the efficiency of the two approaches.
3.Name the different ways of heat loss in these systems (Microwave & Kettle) during the heating process.
Around the core of a nuclear reactor shielded by a large pool of water, Cerenkov radiation appears as a blue glow (see figure below). Cerenkov radiation occurs when a particle travels faster through a
medium than the speed of light in that medium. It is the electromagnetic equivalent of a bow wave or a sonic boom. An electron is traveling through water at a speed 7.2% faster than the speed of
light in water.
U.S. Department of Energy/Photo Researchers, Inc.
(a) Determine the electron's total energy.
MeV
(b) Determine the electron's kinetic energy.
MeV
(c) Determine the electron's momentum.
MeV/c
(d) Find the angle between the shock wave and the electron's direction of motion.
O
Chapter 38 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 38.1 - Which observer in Figure 38.1 sees the balls...Ch. 38.1 - Prob. 38.2QQCh. 38.4 - Suppose the observer O on the train in Figure 38.6...Ch. 38.4 - Prob. 38.4QQCh. 38.4 - Prob. 38.5QQCh. 38.4 - You are observing a spacecraft moving away from...Ch. 38.6 - You are driving on a freeway at a relativistic...Ch. 38.8 - Prob. 38.8QQCh. 38 - In a laboratory frame of reference, an observer...Ch. 38 - Prob. 2P
Ch. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - An astronaut is traveling in a space vehicle...Ch. 38 - Prob. 7PCh. 38 - You have been hired as an expert witness for an...Ch. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 38 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 38 - You have an assistantship with a math professor in...Ch. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - A moving rod is observed to have a length of =...Ch. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - You have been hired as an expert witness in the...Ch. 38 - Figure P38.21 shows a jet of material (at the...Ch. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - (a) Find the kinetic energy of a 78.0-kg...Ch. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - An unstable particle with mass m = 3.34 1027 kg...Ch. 38 - Prob. 41PCh. 38 - Prob. 42APCh. 38 - Prob. 43APCh. 38 - Prob. 44APCh. 38 - Prob. 45APCh. 38 - Prob. 46APCh. 38 - Prob. 47APCh. 38 - Prob. 48APCh. 38 - Prob. 49APCh. 38 - Prob. 50APCh. 38 - Prob. 51APCh. 38 - Prob. 52APCh. 38 - The creation and study of new and very massive...Ch. 38 - Prob. 54CPCh. 38 - Prob. 55CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the momentum of a 100-keV X-ray photon. (b) Find the velocity of a neutron with the same momentum. (c) What is the neutron’s kinetic energy in eV?arrow_forwardAround the core of a nuclear reactor shielded by a large pool of water, Cerenkov radiation appears as a blue glow (see figure below). Cerenkov radiation occurs when a particle travels faster through a medium than the speed of light in that medium. It is the electromagnetic equivalent of a bow wave or a sonic boom. An electron is traveling through water at a speed 7.2% faster than the speed of light in water. U.S. Department of Energy/Photo Researchers, Inc. (a) Determine the electron's total energy. X Your response differs from the correct answer by more than 10%. Double check your calculations. MeV (b) Determine the electron's kinetic energy. X Your response differs from the correct answer by more than 100%. MeV (c) Determine the electron's momentum. X Your response differs from the correct answer by more than 10%. Double check your calculations. MeV/c (d) Find the angle between the shock wave and the electron's direction of motion. Oarrow_forwardAstronomers determine that a particular star in our galaxy is moving toward Earth at a speed of 715.5 km/s with respect to the Earth. If Earth receives a wavelength i = 675.6 nm from this star, what was the wavelength emitted by the star? nm Additional Materials O Readingarrow_forward
- Question: The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?arrow_forwardthe US, Verizon's new 5G signal uses electromagnetic waves of frequency 28 GHz, which is 28 x 10^9 Hz. a. What wavelength of light is this? b. What kind of electromagnetic wave is this (radio, infrared, x-ray, etc)? C. Your microwave oven uses electromagnetic waves of frequency 2.4 GHz or 2.4 x 10^9 Hz. The energy contained in a photon is directly proportional to its frequency. This means that: Everizon 28 x 10°HZ W hile EMicrowave Oven x 2.4 × 10°HZ How many times more energy does a photon from the Verizon cell signal have than the photon from your microwave? Compare that to the previous (4G LTE) signal of 700 MHz or 7 x 10^8 Hz. (Before you get too worried remember that total energy delivered is related to intensity as well, not just individual photon energy. You can blind yourself with a red laser, but not with a dim red penlight of the same frequency, for example). acearrow_forwardA perfectly reflecting thin square mirror 3 m on a side faces the Sun at about Earth's distance from the Sun so that the solar intensity is 1400 W/m. If the mirror has a mass of 10 g and starts from rest, how fast is it moving after 100,000 seconds (a little more than 1 day) in m/s?arrow_forward
- A particle passes through a mass spectrometer as illustratedin Figure P19.15. The electric field between the plates ofthe velocity selector has a magnitude of 8 250 V/m, and themagnetic fields in both the velocity selector and the deflectionchamber have magnitudes of 0.093 1 T. In the deflectionchamber the particle strikes a photographic plate 39.6 cmremoved from its exit point after traveling in a semicircle.(a) What is the mass - to - charge ratio of the particle? (b) Whatis the mass of the particle if it is doubly ionized? (c) What isits identity, assuming it’s an element?arrow_forwardEM radiation has an average intensity of 2900 W/m2. Which of the following statements about the E or B fields in this radiation is correct? Bmax = 4.93 x 10-6 T Brms = 4.17 x 10-6 T Erms = 806.2 N/C Emax = 1131.6 N/Carrow_forwardE14P8arrow_forward
- A spacecraft in orbit around the moon measures its altitude by reflecting a pulsed 10 MHz radio signal from the surface. If the spacecraft is 10 km high, what is the time between the emission of the pulse and the detection of the echo?A. 33 ns B. 67 nsC. 33 μs D. 67 μsarrow_forwardThe Russian physicist P. A. C˘ erenkov discovered that a charged particle traveling in a solid with a speed exceeding the speed of light in that material radiates electromagnetic radiation. (This is analogous to the sonic boom produced by an aircraft moving faster than the speed of sound in air; see Section 16.9. C˘ erenkov shared the 1958 Nobel Prize for this discovery.) What is the minimum kinetic energy (in electron volts) that an electron must have while traveling inside a slab of crown glass (n = 1.52) in order to create this C˘ erenkov radiation?arrow_forwardA star’s spectrum emits more radiation with a wavelength of 690.0 nm than with any other wavelength. If the star is 9.78 ly from Earth and its radius is 7.20 × 108 m, what will an Earth-based observer measure for this star’s intensity? Stars are nearly perfect blackbodies. (Note: ly stands for light-years.) Answer in W/m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY