Concept explainers
(a)
The equation for u
from the given equation.
(a)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
The equation for the kinetic energy is given as,
Here,
Rearrange the above equation for
Let us assume
Further solve the equation.
Replace
Conclusion:
Therefore, the equation for
(b)
The minimum possible value of speed and corresponding kinetic energy.
(b)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
From the above expression all the term is positive as well as the expression contains only positive sign so the minimum possible value that the speed can have according to the above expression is zero.
At zero speed the corresponding value of kinetic energy is also zero.
Conclusion:
Therefore, the minimum possible value of speed can be zero and corresponding kinetic energy will also be zero.
(c)
The maximum possible value of speed and corresponding kinetic energy.
(c)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (2), the expression for the speed is given as,
The maximum value of speed is equal to the speed of light according to relativistic concept if the speed becomes more than the speed of light then its energy become unstable that would not exist practically.
At this speed of light, the kinetic energy increases without any limit.
Conclusion:
Therefore, the maximum possible value of speed can be speed of light and corresponding kinetic energy will increases without any limit.
(d)
The equation for the acceleration of the particle as a function of kinetic energy and power input.
(d)
Answer to Problem 44AP
Explanation of Solution
Given info: The given equation is
From equation (1), the expression for the speed is given as,
Write the expression for the acceleration of a particle.
Substitute
Replace
Substitute
Conclusion:
Therefore, the equation for the acceleration of the particle as a function of kinetic energy and power input is
(e)
The limiting form of the expression in part (d) at low energy and compare with the non-relativistic expression.
(e)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At low energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at low energy is
(f)
The limiting form of the expression in part (d) at high energy and compare with the non-relativistic expression.
(f)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From equation (4), the expression for the acceleration is given as,
At high energy the value of
Thus, the limiting form of the expression of acceleration at low energy is
Conclusion:
Therefore, the limiting form of the expression of acceleration at high energy is
(g)
The reason that answer to part (f) help account for the answer to part (c) at constant input power.
(g)
Answer to Problem 44AP
Explanation of Solution
Given info: The non-relativistic expression for the acceleration is
From the answer of part (f) the expression for the acceleration is,
Here,
In part (c), the speed at high energy approaches to the speed of light. But from the acceleration equation if the energy is imparted to the particle at constant input power the acceleration is steeply decreases because the acceleration is inversely proportional to the cube root of the kinetic energy. So at high energy acceleration is very less and the velocity of the particle approaches to a constant value as indicate in part (c).
Conclusion:
Therefore, the acceleration of the particle is very less at high energy that gives the velocity of the particle a constant value.
Want to see more full solutions like this?
Chapter 38 Solutions
PHYSICS F/ SCI +ENGRS W/ WEBASSIGN ACCES
- 3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forwardCan someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forward
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- 1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward5. The radius of a circle is 5.5 cm. (a) What is the circumference in meters? (b) What is its area in square meters? 6. Using the generic triangle below, solve the following: 0 = 55 and c = 32 m, solve for a and b. a = 250 m and b = 180 m, solve for the angle and c. b=104 cm and c = 65 cm, solve for a and the angle b a 7. Consider the figure below representing the Temperature (T in degrees Celsius) as a function of time t (in seconds) 4 12 20 (a) What is the area under the curve in the figure below? (b) The area under the graph can be calculated using integrals or derivatives? (c) During what interval is the derivative of temperature with respect to time equal to zero?arrow_forwardPart 3: Symbolic Algebra Often problems in science and engineering are done with variables only. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers. 1. Solve 3x-7= x + 3 for x 2x-1 2. Solve- for x 2+2 In questions 3-11 solve for the required symbol/letter 3. v2 +2a(s-80), a = = 4. B= Ho I 2π r 5. K = kz² 6.xm= MAL ,d= d 7.T, 2 = 8.F=Gm 9. mgh=mv² 10.qV = mu² 80 12. Suppose that the height in meters of a thrown ball after t seconds is given by h =6+4t-t². Complete the square to find the highest point and the time when this happens. 13. Solve by completing the square c₁t² + cat + 3 = 0. 14. Solve for the time t in the following expression = 0 + vot+at²arrow_forward
- A blacksmith cools a 1.60 kg chunk of iron, initially at a temperature of 650.0° C, by trickling 30.0°C water over it. All the water boils away, and the iron ends up at a temperature of 120.0° C. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Changes in both temperature and phase. Part A How much water did the blacksmith trickle over the iron? Express your answer with the appropriate units. HÅ mwater = Value 0 ? Units Submit Request Answerarrow_forwardSteel train rails are laid in 13.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -6.0° C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 32.0°C? Express your answer with the appropriate units. ☐ о μΑ ? D = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Start Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 32.0°C? Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the stress is compressive. F A Ο ΑΣΦ ? Раarrow_forwardhelp me with this and the step I am so confused. It should look something like the figure i shownarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning