FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 42P
To determine
To find:
a) Find the wavelength at which its spectral radiancy is maximum
b) Identify the type of
c) What is the corresponding temperature of the universe?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Plank's spectral energy density distribution is given as a function of frequency (v) and
Temperature (T),
8Th
3
u (v)
=
C3
hv
ект
- 1]
c is the speed of light constant, h is the Plank constant, and k is the Boltzmann constant.
v at umax determines the color of the radiating blackbody. Find v at umax in the form of a
multiple of T.
can u give answer
Model the tungsten filament of a lightbulb as a black body at temperature 2 900 K. (a) Determine the wavelength of light it emits most strongly. (b) Explain why the answer to part (a) suggests that more energy from the lightbulb goes into infrared radiation than into visible light.
Chapter 38 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (BB-1) The average adult human body has a surface area of about 1.8 m², and a temperature of 98.6 degrees Fahrenheit. For this problem, treat a person as an ideal blackbody radiator. (a) What is the power radiated (in Watts) by the body? (b) At what wavelength does the body radiate most strongly (in nanometers, nm)? What part of the electromagnetic spectrum is this (i.e., visible light, ultraviolet, X-ray, etc.).arrow_forwardLet's say that a photon carries an energy equivalent to 620 eV (electron volts). Knowing that h*c = 1240 eV*nm, what type of radiation is this photon?arrow_forwardyou are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.arrow_forward
- A 600 MHz uniform plane wave incident in the z direction on a thick slab of Teflon (&r= 2.1, ur= 1.0) imparts a 1.0 V/m amplitude y-polarized electric field intensity at the surface. Assuming σ = 0 for Teflon, find in the Teflon (a) E(z,t), (b) H(z,t) and (c) Pav.arrow_forwardThe unit surface of a black body at 37 °C radiates a number of electromagnetic waves with a certain wavelength. If the Wien constant is 2.898 x 10^-3 m.k, then the wavelength at which the blackbody radiation density per unit length has a maximum value isarrow_forwardThe temperature of an electric heating element is 150°C. At what wavelength does the radiation emitted from the heating element reach its peak? Model the tungsten filament of a lightbulb as a black body at temperature 2 900 K. (a) Determine the wave- length of light it emits most strongly. (b) Explain why the answer to part (a) suggests that more energy from the lightbulb goes into infrared radiation than into vis- ible light.arrow_forward
- A cavity radiator has its maximum spectral radiance at a wavelength of 2,5×10-7 m. If the body is heated so that T/T0 = 5,5, what will be the ratio of radiant powers W/W0? Wien's constant b = 2.897 ×10-3 m·K.arrow_forwardThe radiant energy density (ρν) for the blackbody radiation is given by (see image below) where ρν dν is the energy per unit volume in the frequency range between ν and ν + dν.a) To exemplify and using ν = 3.5 x 1014 s-1, calculate density (concentration) spectral radiant excitation (in J m-2) as a function of frequency for the blackbody, a T=5776 K (the temperature of the sun).b)Plot the graph of spectral density versus frequency.arrow_forward(a) Calculate the speed of an electron that is in the n = 1 orbit of a hydrogen atom, and give your answerv as a fraction of the speed of light in empty space c, for example, v = 0.5 if the answer werev = c/2 = 1.50 × 108 m/s. (It isn’t.)(b) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 3 orbit to the n = 2 orbit? This is the Hα line, and its light is scarlet, the color offresh human blood.(c) How many nanometers would be the wavelength of the photon emitted when the electron in a hydrogenatom jumps from the n = 2 orbit to the n = 1 orbit?(d) How many nanometers would be the wavelength of a photon that would have the minimum amount ofenergy needed to ionize any hydrogen atom? (Hint: Electromagnetic radiation with this wavelength or shorteris called extreme ultraviolet radiation.(e) How many electron-volts (eV) would the electron in part (7)(d) need to have?arrow_forward
- If a missile emits 5×106 W of power in the 2.65 - 2.80 μm band, estimate the energy collected by a detector at a range of 6.0 Earth-radii away from the target. Assume the detector has a light gathering area of 0.8 m2 and an integration time of 0.1 sec. Take the radius of the Earth to be 6371 km. Use scientific notation for your answer (e.g. 1.2×10-34 = 1.2E-34). The energy collected by the detector in 0.1 second is how many Joules?arrow_forwardA blackbody is radiating at a temperature of 2.10 x 103 K. (a) What is the total energy density of the radiation? 9.18e16 eV/m3 (b) What fraction of the energy is emitted in the interval between 1.50 and 1.55 eV? (Give your answer in decimal or scientific notation.) 1.662e-17 (c) What fraction is emitted between 10.25 and 10.30 eV? (Give your answer in decimal or scientific notation.) 5.448e-19arrow_forwardSuppose that the microwave radiation has a wavelength of 11.6 cm. How many photons are required to heat 265 mL of coffee from 25.0 degrees Celcius to 62.0 degrees Celcius? Assume that the coffee has the same density, 0.997 g/mL, and specific heat capacity, 4.184 J/(g.K), as water over this temperature range.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning