FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 36P
To determine
To find:
a) Wavelength of incident gamma rays
b) Wavelength of gamma rays scattered at
c) Photon energy of scattered rays
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gamma rays of energy 0.653 Mev are Compton scattered.
(a) What is the energy of the scattered photon observed at a scattering angle of 62.007
MeV
(b) What is the kinetic energy of the scattered electrons?
MeV
(a) If the average frequency emitted by a 120 W light bulb is 5.00 * 10^14 Hz and 10.0% of the input power is emitted as visible light, approximately how many visible-light photons are emitted per second? (b) At what distance would this correspond to 1.00 * 10^11 visible-light photons per cm2 per second if the light is emitted uniformly in all directions?
A photon with wavelength X scatters off an electron at rest, at an angle with the incident direction.
The Compton wavelength of the electron Ac = 0.0024 nm.
a)
For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in
nanometres.
b)
Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants
h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables
only. (Please enter an algebraic expression using latex format; do not input any numerical values)
c)
Using the energy conservation condition, find the value of the electron energy Ee after scattering in
units of keV.
d)
Write an algebraic expression for the electron's momentum pe in
terms of its energy Ee, its mass me and the speed of light c.
e)
What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee,
me, and X and c.
f)
Find the value of the de Broglie wavelength of the scattered electron…
Chapter 38 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 38 - Prob. 1QCh. 38 - Prob. 2QCh. 38 - Prob. 3QCh. 38 - Prob. 4QCh. 38 - Prob. 5QCh. 38 - Prob. 6QCh. 38 - Prob. 7QCh. 38 - Prob. 8QCh. 38 - Prob. 9QCh. 38 - Prob. 10Q
Ch. 38 - Prob. 11QCh. 38 - Prob. 12QCh. 38 - Prob. 13QCh. 38 - Prob. 14QCh. 38 - Prob. 15QCh. 38 - Prob. 16QCh. 38 - Prob. 1PCh. 38 - Prob. 2PCh. 38 - Prob. 3PCh. 38 - Prob. 4PCh. 38 - Prob. 5PCh. 38 - Prob. 6PCh. 38 - Prob. 7PCh. 38 - Prob. 8PCh. 38 - Prob. 9PCh. 38 - Prob. 10PCh. 38 - Prob. 11PCh. 38 - Prob. 12PCh. 38 - Prob. 13PCh. 38 - Prob. 14PCh. 38 - Prob. 15PCh. 38 - Prob. 16PCh. 38 - Prob. 17PCh. 38 - Prob. 18PCh. 38 - Prob. 19PCh. 38 - Prob. 20PCh. 38 - Prob. 21PCh. 38 - Prob. 22PCh. 38 - Prob. 23PCh. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - Prob. 27PCh. 38 - Prob. 28PCh. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Prob. 31PCh. 38 - Prob. 32PCh. 38 - Prob. 33PCh. 38 - Prob. 34PCh. 38 - Prob. 35PCh. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - Prob. 40PCh. 38 - Prob. 41PCh. 38 - Prob. 42PCh. 38 - Prob. 43PCh. 38 - Prob. 44PCh. 38 - Prob. 45PCh. 38 - Prob. 46PCh. 38 - Prob. 47PCh. 38 - Prob. 48PCh. 38 - Prob. 49PCh. 38 - Prob. 50PCh. 38 - Prob. 51PCh. 38 - Prob. 52PCh. 38 - Prob. 53PCh. 38 - Prob. 54PCh. 38 - Prob. 55PCh. 38 - Prob. 56PCh. 38 - Prob. 57PCh. 38 - Prob. 58PCh. 38 - Prob. 59PCh. 38 - Prob. 60PCh. 38 - Prob. 61PCh. 38 - Prob. 62PCh. 38 - Prob. 63PCh. 38 - Prob. 64PCh. 38 - Prob. 65PCh. 38 - Prob. 66PCh. 38 - Prob. 67PCh. 38 - Prob. 68PCh. 38 - Prob. 69PCh. 38 - Prob. 70PCh. 38 - Prob. 71PCh. 38 - Prob. 72PCh. 38 - Prob. 73PCh. 38 - Prob. 74PCh. 38 - Prob. 75PCh. 38 - Prob. 76PCh. 38 - Prob. 77PCh. 38 - Prob. 78PCh. 38 - Prob. 79PCh. 38 - Prob. 80PCh. 38 - Prob. 81PCh. 38 - Prob. 82PCh. 38 - Prob. 83PCh. 38 - Prob. 84PCh. 38 - Prob. 85PCh. 38 - Prob. 86PCh. 38 - Prob. 87PCh. 38 - Prob. 88PCh. 38 - Prob. 89PCh. 38 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A photon of energy 5.0 keV collides with a stationary electron and is scattered at an angle of 60°. What is the energy acquired by the electron in the collision?arrow_forwardAn AM radio transmitter radiates 500 kW at a frequency of 760 kHz. How many photons per second does the emitter emit?arrow_forwardWhat is the maximum kinetic energy of photoelectrons ejected from sodium by the incident radiation of wavelength 450 nm?arrow_forward
- What is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardPhotoelectrons are ejected from a photo electrode and are detected at a distance of 2.50 cm away from the photoelectrical. The work function of the photo electrode is 2.71 eV and the incident radiation has a wavelength of 420 nm. How long does it take a photoelectron to travel to the detector?arrow_forwardAt what velocity will an electron have a wavelength of 1.00 m?arrow_forward
- A glass plate has a mass of 0.50 kg and a specific heat capacity of 840 J/(kg-C). The wavelength of infrared light is 14 x 10 m, while the wavelength of blue light is 4.7 x 107m. Find the number of infrared photons and the number of blue photons needed to raise the temperature of the glass plate by 2.0 °C, assuming that all the photons are absorbed by the glass. Nudrored Number Units Nyisible - Number Unitsarrow_forwardAn x ray source is incident on a collection of stationary electrons. The electrons are scattered with a speed of 4.50 \times 10^5 m/s, and the photon scatters at an angle of 60.0\ deg from the incident direction of the photons. Determine the wavelength of the x ray source.arrow_forwardAn FM radio station broadcasts at a frequency of 98.1 MHz. The powerradiated from the antenna is 5.0 x 10 4 W. How many photons persecond does the antenna emit?arrow_forward
- A sodium lamp emits light at the power P = 100 W and at the wavelength = 593 nm, and the emission is uniformly in all directions. (a) At what rate are photons emitted by the lamp? (b) At what distance from the lamp will a totally absorbing screen absorb photons at the rate of 1.00 photon /cm²s? (c) What is the rate per square meter at which photons are intercepted by a screen at a distance of 2.40 m from the lamp? (a) Number (b) Number i MI (c) Number i Units Units Units <arrow_forwardX-ray with wavelength 0.2 nm are scattered from a carbon block. The scattered radiation is viewed at right angle to the direction of the incident beam. What is the Compton shift?arrow_forwardIn a Compton scattering experiment, an x-ray photon scatters through an angle of 13.4° from free electron that is initially at rest. The electron recoils with a speed of 1,160 km/s. (a) Calculate the wavelength of the incident photon. nm (b) Calculate the angle through which the electron scatters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning