PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
10th Edition
ISBN: 9781337888547
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 38, Problem 3P
A meterstick moving at 0.900c relative to the Earth’s surface approaches an observer at rest with respect to the Earth’s surface. (a) What is the meterstick’s length as measured by the observer? (b) Qualitatively, how would the answer to part (a) change if the observer started running toward the meterstick?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Part A
You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You
estimate that a transmission wire is about 12 m above the ground. The local power company tells you that
the line operates at 12 kV and provide a maximum of 60 MW to the local area.
Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.]
Express your answer using two significant figures.
ΟΤΕ ΑΣΦ
VAΣ
Bmax=
Submit
Request Answer
Part B
Compare to the Earth's field of 5.0 x 10-5 T.
Express your answer using two significant figures.
Ο ΑΣΦ
B
BEarth
?
?
T
Ho propel
9-kN t.
Boat
27. An elevator accelerates downward at 2.4 m/s². What force does
the elevator's floor exert on a 52-kg passenger?
16.
17
A CUIN
Starting from rest and undergoing constant acceleration, a 940-kg
racing car covers 400 m in 4.95 s. Find the force on the car.
Chapter 38 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
Ch. 38.1 - Which observer in Figure 38.1 sees the balls...Ch. 38.1 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 38.4 - Suppose the observer O on the train in Figure 38.6...Ch. 38.4 - A crew on a spacecraft watches a movie that is two...Ch. 38.4 - You are packing for a trip to another star. During...Ch. 38.4 - You are observing a spacecraft moving away from...Ch. 38.6 - You are driving on a freeway at a relativistic...Ch. 38.8 - The following pairs of energiesparticle 1: E, 2E;...Ch. 38 - In a laboratory frame of reference, an observer...Ch. 38 - Prob. 2P
Ch. 38 - A meterstick moving at 0.900c relative to the...Ch. 38 - A muon formed high in the Earths atmosphere is...Ch. 38 - A deep-space vehicle moves away from the Earth...Ch. 38 - An astronaut is traveling in a space vehicle...Ch. 38 - For what value of does = 1.010 0? Observe that...Ch. 38 - You have been hired as an expert witness for an...Ch. 38 - A spacecraft with a proper length of 300 m passes...Ch. 38 - A spacecraft with a proper length of Lp passes by...Ch. 38 - A light source recedes from an observer with a...Ch. 38 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 38 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 38 - You have an assistantship with a math professor in...Ch. 38 - Police radar detects the speed of a car (Fig....Ch. 38 - Shannon observes two light pulses to be emitted...Ch. 38 - A moving rod is observed to have a length of =...Ch. 38 - A rod moving with a speed v along the horizontal...Ch. 38 - A red light flashes at position xR = 3.00 m and...Ch. 38 - You have been hired as an expert witness in the...Ch. 38 - Figure P38.21 shows a jet of material (at the...Ch. 38 - A spacecraft is launched from the surface of the...Ch. 38 - Calculate the momentum of an electron moving with...Ch. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - An unstable particle at rest spontaneously breaks...Ch. 38 - (a) Find the kinetic energy of a 78.0-kg...Ch. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Protons in an accelerator at the Fermi National...Ch. 38 - You are working for an alternative energy company....Ch. 38 - The total energy of a proton is twice its rest...Ch. 38 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 38 - The rest energy of an electron is 0.511 MeV. The...Ch. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - An unstable particle with mass m = 3.34 1027 kg...Ch. 38 - Review. A global positioning system (GPS)...Ch. 38 - Prob. 42APCh. 38 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 38 - Prob. 44APCh. 38 - Prob. 45APCh. 38 - The motion of a transparent medium influences the...Ch. 38 - An object disintegrates into two fragments. One...Ch. 38 - Prob. 48APCh. 38 - Review. Around the core of a nuclear reactor...Ch. 38 - Prob. 50APCh. 38 - Prob. 51APCh. 38 - Prob. 52APCh. 38 - Prob. 53CPCh. 38 - A particle with electric charge q moves along a...Ch. 38 - Suppose our Sun is about to explode. In an effort...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward64. Two springs have the same unstretched length but different spring constants, k₁ and k₂. (a) If they're connected side by side and stretched a distance x, as shown in Fig. 4.24a, show that the force exerted by the combination is (k₁ + k₂)x. (b) If they're con- nected end to end (Fig. 4.24b) and the combination is stretched a distance x, show that they exert a force k₁k2x/(k₁ + k₂). www (a) FIGURE 4.24 Problem 65 www (b)arrow_forward65. Although we usually write Newton's second law for one-dimensional motion in the form F =ma, which holds when mass is constant, d(mv) a more fundamental version is F = . Consider an object dt whose mass is changing, and use the product rule for derivatives to show that Newton's law then takes the form F dm = ma + v dtarrow_forward
- If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?arrow_forwardConsider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…arrow_forwardPlease help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Secondarrow_forward
- 5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the masses are T1 and T2 as shown. m T1 T2 F m m How does the magnitude of tension T₁ compare to F? A) T₁ = F B) T₁ = (1/2)F C) T₁ = (1/3)F D) T₁ = 2F E) T₁ = 3Farrow_forwardUsing Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forwardCalculate the magnitude of the gravitational force between 2 protons located 1 meter apart from each other in Newtons using Newton's Law of Universal Gravitation.arrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere if there is a distance 25 cm from the person to the sphere using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombs (with no unit label, as usual).arrow_forwardA balloon is rubbed on a sweater, giving the balloon a negative charge by adding an extra 3.9 x 107 electrons compared to its neutral state. What is the magnitude of the net charge on the balloon, in Coulombs?arrow_forwardA ping pong ball and a tennis ball are dropped and there is a very small gap between them when the tennis ball hits the floor. Indicate the directions of the momentums of the ping pong ball and the tennis ball after the tennis ball collides with the floor, but before the balls collide with each other. (Drawing a diagram may be helpful.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY