PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
10th Edition
ISBN: 9781337888547
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 38, Problem 31P
Protons in an accelerator at the Fermi National Laboratory near Chicago are accelerated to a total energy that is 400 times their rest energy. (a) What is the speed of these protons in terms of c? (b) What is their kinetic energy in MeV?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 38 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
Ch. 38.1 - Which observer in Figure 38.1 sees the balls...Ch. 38.1 - A baseball pitcher with a 90-mi/h fastball throws...Ch. 38.4 - Suppose the observer O on the train in Figure 38.6...Ch. 38.4 - A crew on a spacecraft watches a movie that is two...Ch. 38.4 - You are packing for a trip to another star. During...Ch. 38.4 - You are observing a spacecraft moving away from...Ch. 38.6 - You are driving on a freeway at a relativistic...Ch. 38.8 - The following pairs of energiesparticle 1: E, 2E;...Ch. 38 - In a laboratory frame of reference, an observer...Ch. 38 - Prob. 2P
Ch. 38 - A meterstick moving at 0.900c relative to the...Ch. 38 - A muon formed high in the Earths atmosphere is...Ch. 38 - A deep-space vehicle moves away from the Earth...Ch. 38 - An astronaut is traveling in a space vehicle...Ch. 38 - For what value of does = 1.010 0? Observe that...Ch. 38 - You have been hired as an expert witness for an...Ch. 38 - A spacecraft with a proper length of 300 m passes...Ch. 38 - A spacecraft with a proper length of Lp passes by...Ch. 38 - A light source recedes from an observer with a...Ch. 38 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 38 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 38 - You have an assistantship with a math professor in...Ch. 38 - Police radar detects the speed of a car (Fig....Ch. 38 - Shannon observes two light pulses to be emitted...Ch. 38 - A moving rod is observed to have a length of =...Ch. 38 - A rod moving with a speed v along the horizontal...Ch. 38 - A red light flashes at position xR = 3.00 m and...Ch. 38 - You have been hired as an expert witness in the...Ch. 38 - Figure P38.21 shows a jet of material (at the...Ch. 38 - A spacecraft is launched from the surface of the...Ch. 38 - Calculate the momentum of an electron moving with...Ch. 38 - Prob. 24PCh. 38 - Prob. 25PCh. 38 - Prob. 26PCh. 38 - An unstable particle at rest spontaneously breaks...Ch. 38 - (a) Find the kinetic energy of a 78.0-kg...Ch. 38 - Prob. 29PCh. 38 - Prob. 30PCh. 38 - Protons in an accelerator at the Fermi National...Ch. 38 - You are working for an alternative energy company....Ch. 38 - The total energy of a proton is twice its rest...Ch. 38 - When 1.00 g of hydrogen combines with 8.00 g of...Ch. 38 - The rest energy of an electron is 0.511 MeV. The...Ch. 38 - Prob. 36PCh. 38 - Prob. 37PCh. 38 - Prob. 38PCh. 38 - Prob. 39PCh. 38 - An unstable particle with mass m = 3.34 1027 kg...Ch. 38 - Review. A global positioning system (GPS)...Ch. 38 - Prob. 42APCh. 38 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 38 - Prob. 44APCh. 38 - Prob. 45APCh. 38 - The motion of a transparent medium influences the...Ch. 38 - An object disintegrates into two fragments. One...Ch. 38 - Prob. 48APCh. 38 - Review. Around the core of a nuclear reactor...Ch. 38 - Prob. 50APCh. 38 - Prob. 51APCh. 38 - Prob. 52APCh. 38 - Prob. 53CPCh. 38 - A particle with electric charge q moves along a...Ch. 38 - Suppose our Sun is about to explode. In an effort...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forward(a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3, what is the ratio of mass destroyed to original mass, m/m ?arrow_forwardA neutron lives 900 s when at rest relative to a observer. How fast is the neutron moving relative to a observer who measures its life span to be 2065 s?arrow_forward
- An interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forwardA spacecraft moves at a speed of 0.900c. If its length is L as measured by an observer on the spacecraft, what is the length measured by a ground observer?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward
- Owen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardAs measured in a laboratory reference frame, a linear accelerator ejects a proton with a speed of 0.780c. Moments later, a muon is ejected at a speed of 0.920c as measured in the laboratory reference frame. What is the speed of the proton in a reference frame where the velocity of the muon is zero?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- Owen and Dina are at rest in frame S, which is moving with a speed of 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P26.45). Owen throws the ball to Dina with a speed of 0.800c (according to Owen) and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, and (d) how fast is the ball moving? Figure. P26.45arrow_forwardAn electron has a speed of 0.75c. Find the speed of a proton that has (a) the same kinetic energy as the electron and (b) the same momentum as the electron.arrow_forward(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY