Concept explainers
Suppose the single slit in Figure 38.4 is 6.00 cm wide and in front of a microwave source operating at 7.50 GHz. (a) Calculate the angle for the first minimum in the diffraction pattern. (b) What is the relative intensity l/lmax at 0 =- 15.0°? (c) Assume two such sources, separated laterally by 20.0 cm, are behind the slit. What must be the maximum distance between the plane of the sources and the slit if the diffraction patterns are to be resolved? In this case, the approximation sin θ ≈ tan 8 is not valid because of the relatively small value of a/λ.
(a)
The angle for the first minimum in the diffraction pattern.
Answer to Problem 38.77CP
The angle for the first minimum in the diffraction pattern is
Explanation of Solution
Given info: The width of the slit is
The expression of wavelength (
Here,
Substitute
Thus, the wavelength of the microwave source is
The expression of the condition for the first minimum in the diffraction pattern is,
Here,
Substitute
Thus, the angle for the first minimum in the diffraction pattern is
Conclusion:
Therefore, the angle for the first minimum in the diffraction pattern is
(b)
The relative intensity at
Answer to Problem 38.77CP
The relative intensity at
Explanation of Solution
Given info: The width of the slit is
The expression of the intensity variation in a diffraction pattern from a single slit is,
Here,
Rearrange the above equation for
Substitute
Thus, the relative intensity
Conclusion
Therefore, the relative intensity at
(c)
The maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved.
Answer to Problem 38.77CP
The maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved is
Explanation of Solution
Given info: The width of the slit is
The figure1 shows the given condition.
Figure (1)
Consider
The expression of distance (
Here,
Substitute
Thus, the distance of each source from the central line is
From figure1 the expression of distance (
The value of angle
Substitute
Substitute
Conclusion:
Therefore, The maximum distance between the plane of the sources and the slit if the diffraction pattern are to be resolved is
Want to see more full solutions like this?
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning