![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/9781305804463/9781305804463_largeCoverImage.jpg)
Concept explainers
A horizontal laser beam of wavelength 632.8 nm has a circular cross section 2.00 nun in diameter. A rectangular aperture is to lie placed in the center of the beam so that when the light falls perpendicularly on a wall 4.50 m away, the central maximum fills a rectangle 110 mm wide and 6.00 mm high. The dimensions are measured between the minima bracketing the central maximum. Find the required (a) width and (b) height of the aperture. (c) Is the longer dimension of the central bright patch in the diffraction pattern horizontal or vertical? (d) Is the longer dimension of the aperture horizontal or vertical? (e) Explain the relationship between these two rectangles, using a diagram.
(a)
![Check Mark](/static/check-mark.png)
The width of the aperture.
Answer to Problem 38.4P
The width of the aperture is
Explanation of Solution
Given info: The wavelength of the laser beam is
Write the expression for the destructive interference.
Here,
Write the expression for the distance of the minimum from the central maximum.
Here,
The tangent is approximately equal to the sine if the angle is very small.
Substitute
Write the expression for the width of the central maximum.
Here,
Equate equation (1) and equation (2).
Substitute
Substitute
Conclusion:
Therefore, the width of the aperture is
(b)
![Check Mark](/static/check-mark.png)
The height of the aperture.
Answer to Problem 38.4P
The height of the aperture is
Explanation of Solution
Given info: The wavelength of the laser beam is
Write the expression for the height of the central maximum.
Here,
Substitute
Substitute
Conclusion:
Therefore, the height of the aperture is
(c)
![Check Mark](/static/check-mark.png)
Whether the longer dimension of the central bright patch is horizontal or vertical.
Answer to Problem 38.4P
The longer dimension of the central bright patch is horizontal.
Explanation of Solution
Given info: The wavelength of the laser beam is
From the given information, the width of the rectangle in the central bright patch is
Conclusion:
Therefore, the longer dimension of the central bright patch is horizontal.
(d)
![Check Mark](/static/check-mark.png)
Whether the longer dimension of the aperture is horizontal or vertical.
Answer to Problem 38.4P
The longer dimension of the aperture is vertical.
Explanation of Solution
Given info: The wavelength of the laser beam is
From part (a), the width of the aperture is
Conclusion:
Therefore, the longer dimension of the aperture is vertical
(e)
![Check Mark](/static/check-mark.png)
The relationship between the two rectangles.
Answer to Problem 38.4P
The longer dimension is
Explanation of Solution
Given info: The wavelength of the laser beam is
From part (a), the width of the aperture is
The smaller distance between aperture edges causes a wider diffraction angle.
Write the expression for the ratio of larger dimension to the smaller dimension of the aperture.
Substitute
Thus, the longer dimension is
Conclusion:
Therefore, the longer dimension is
Want to see more full solutions like this?
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardCar A starts from rest at t = 0 and travels along a straight road with a constant acceleration of 6 ft/s^2 until it reaches a speed of 60ft/s. Afterwards it maintains the speed. Also, when t = 0, car B located 6000 ft down the road is traveling towards A at a constant speed of 80 ft/s. Determine the distance traveled by Car A when they pass each other.Write the solution using pen and draw the graph if needed.arrow_forward
- In the given circuit the charge on the plates of 1 μF capacitor, when 100 V battery is connected to the terminals A and B, will be 2 μF A 1 µF B 3 µFarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forwardAn electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas. Momentum (MeV/c) relativistic classical electron proton Kinetic Energy (MeV)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)