
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9781305804463
Author: Jewett
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 38, Problem 38.38P
To determine
The predicted angle for the x-rays in a first order maximum.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this
coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping.
°
=
A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal.
(a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom.
horizontal force
magnitude
342.
N
direction
towards the wall
✓
vertical force
1330
N
up
magnitude
direction
(b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground?
0.26
×
You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of
your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop,
ma
when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of
average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and
hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the
magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of
Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also
assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.)
(a) What force (in N) must John apply along the handles to just start the wheel over the brick?
(No Response) N
(b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick?
magnitude (No Response) KN
direction
(No Response) ° clockwise from the -x-axis
Chapter 38 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 38 - Suppose the slit width in Figure 37.4 is made half...Ch. 38 - Consider the central peak in the diffraction...Ch. 38 - Cats eyes have pupils that can be modeled as...Ch. 38 - Suppose you are observing a binary star with a...Ch. 38 - Ultraviolet light of wavelength 350 nm is incident...Ch. 38 - A polarizer for microwaves can be made as a grid...Ch. 38 - You are walking down a long hallway that has many...Ch. 38 - Certain sunglasses use a polarizing material to...Ch. 38 - What is most likely to happen to a beam of light...Ch. 38 - In Figure 38.4, assume the slit is in a barrier...
Ch. 38 - A Fraunhofer diffraction pattern is produced on a...Ch. 38 - Consider a wave passing through a single slit....Ch. 38 - Assume Figure 38.1 was photographed with red light...Ch. 38 - If plane polarized light is sent through two...Ch. 38 - Why is it advantageous to use a large-diameter...Ch. 38 - What combination of optical phenomena causes the...Ch. 38 - Prob. 38.10OQCh. 38 - When unpolarized light passes through a...Ch. 38 - Off in the distance, you see the headlights of a...Ch. 38 - Prob. 38.1CQCh. 38 - Holding your hand at arms length, you can readily...Ch. 38 - Prob. 38.3CQCh. 38 - (a) Is light from the sky polarized? (b) Why is it...Ch. 38 - Prob. 38.5CQCh. 38 - If a coin is glued to a glass sheet and this...Ch. 38 - Fingerprints left on a piece of glass such as a...Ch. 38 - A laser produces a beam a few millimeters wide,...Ch. 38 - Prob. 38.9CQCh. 38 - John William Strutt, Lord Rayleigh (1842-1919),...Ch. 38 - Prob. 38.11CQCh. 38 - Prob. 38.12CQCh. 38 - Light of wavelength 587.5 nm illuminates a slit of...Ch. 38 - Heliumneon laser light ( = 632.8 nm) is sent...Ch. 38 - Sound with a frequency 650 Hz from a distant...Ch. 38 - A horizontal laser beam of wavelength 632.8 nm has...Ch. 38 - Coherent microwaves of wavelength 5.00 cm enter a...Ch. 38 - Light of wavelength 540 nm passes through a slit...Ch. 38 - A screen is placed 50.0 cm from a single slit,...Ch. 38 - A screen is placed a distance L from a single slit...Ch. 38 - Assume light of wavelength 650 nm passes through...Ch. 38 - What If? Suppose light strikes a single slit of...Ch. 38 - A diffraction pattern is formed on a screen 120 cm...Ch. 38 - Coherent light of wavelength 501.5 nm is sent...Ch. 38 - Prob. 38.13PCh. 38 - The pupil of a cats eye narrows to a vertical slit...Ch. 38 - The angular resolution of a radio telescope is to...Ch. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - The objective lens of a certain refracting...Ch. 38 - Yellow light of wavelength 589 nm is used to view...Ch. 38 - What is the approximate size of the smallest...Ch. 38 - A heliumneon laser emits light that has a...Ch. 38 - To increase the resolving power of a microscope,...Ch. 38 - Narrow, parallel, glowing gas-filled tubes in a...Ch. 38 - Impressionist painter Georges Seurat created...Ch. 38 - A circular radar antenna on a Coast Guard ship has...Ch. 38 - Prob. 38.25PCh. 38 - Prob. 38.26PCh. 38 - Consider an array of parallel wires with uniform...Ch. 38 - Three discrete spectral lines occur at angles of...Ch. 38 - The laser in a compact disc player must precisely...Ch. 38 - A grating with 250 grooves/mm is used with an...Ch. 38 - A diffraction grating has 4 200 rulings/cm. On a...Ch. 38 - The hydrogen spectrum includes a red line at 656...Ch. 38 - Light from an argon laser strikes a diffraction...Ch. 38 - Show that whenever white light is passed through a...Ch. 38 - Light of wavelength 500 nm is incident normally on...Ch. 38 - A wide beam of laser light with a wavelength of...Ch. 38 - Prob. 38.37PCh. 38 - Prob. 38.38PCh. 38 - Potassium iodide (Kl) has the same crystalline...Ch. 38 - Prob. 38.40PCh. 38 - Prob. 38.41PCh. 38 - Why is the following situation impossible? A...Ch. 38 - Prob. 38.43PCh. 38 - The angle of incidence of a light beam onto a...Ch. 38 - Unpolarized light passes through two ideal...Ch. 38 - Prob. 38.46PCh. 38 - You use a sequence of ideal polarizing niters,...Ch. 38 - An unpolarized beam of light is incident on a...Ch. 38 - The critical angle for total internal reflection...Ch. 38 - For a particular transparent medium surrounded by...Ch. 38 - Three polarizing plates whose planes are parallel...Ch. 38 - Two polarizing sheets are placed together with...Ch. 38 - In a single-slit diffraction pattern, assuming...Ch. 38 - Laser light with a wavelength of 632.8 nm is...Ch. 38 - Prob. 38.55APCh. 38 - Prob. 38.56APCh. 38 - Prob. 38.57APCh. 38 - Two motorcycles separated laterally by 2.30 m are...Ch. 38 - The Very Large Array (VLA) is a set of 27 radio...Ch. 38 - Two wavelengths and + (with ) are incident on...Ch. 38 - Review. A beam of 541-nm light is incident on a...Ch. 38 - Prob. 38.62APCh. 38 - Prob. 38.63APCh. 38 - Prob. 38.64APCh. 38 - Prob. 38.65APCh. 38 - Prob. 38.66APCh. 38 - Prob. 38.67APCh. 38 - A pinhole camera has a small circular aperture of...Ch. 38 - Prob. 38.69APCh. 38 - (a) Light traveling in a medium of index of...Ch. 38 - The intensity of light in a diffraction pattern of...Ch. 38 - Prob. 38.72APCh. 38 - Two closely spaced wavelengths of light are...Ch. 38 - Light of wavelength 632.8 nm illuminates a single...Ch. 38 - Prob. 38.75CPCh. 38 - A spy satellite can consist of a large-diameter...Ch. 38 - Suppose the single slit in Figure 38.4 is 6.00 cm...Ch. 38 - In Figure P37.52, suppose the transmission axes of...Ch. 38 - Consider a light wave passing through a slit and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Treadarrow_forwardA person on horseback is on a drawbridge which is at an angle = 20.0° above the horizontal, as shown in the figure. The center of mass of the person-horse system is d = 1.35 m from the end of the bridge. The bridge is l = 7.00 m long and has a mass of 2,300 kg. A cable is attached to the bridge 5.00 m from the frictionless hinge and to a point on the wall h = 12.0 m above the bridge. The mass of person plus horse is 1,100 kg. Assume the bridge is uniform. Suddenly (and most unfortunately for the horse and rider), the ledge where the bridge usually rests breaks off, and at the same moment the cable snaps and the bridge swings down until it hits the wall. ÚI MAJI A TLA MAJA AUTA (a) Find the angular acceleration (magnitude, in rad/s²) of the bridge once it starts to move. 2.22 Use the rotational analogue of Newton's second law. The drawbridge can be modeled as a rod, with rotation axis about one end. rad/s² (b) How long (in s) does the horse and rider stay in contact with the bridge…arrow_forwardTwo long, parallel wires carry currents of I₁ = 2.70 A and I2 = 4.85 A in the directions indicated in the figure below, where d = 22.0 cm. (Take the positive x direction to be to the right.) 12 (a) Find the magnitude and direction of the magnetic field at a point midway between the wires. magnitude direction 3.91 270 μπ ⚫ counterclockwise from the +x axis (b) Find the magnitude and direction of the magnetic field at point P, located d = 22.0 cm above the wire carrying the 4.85-A current. magnitude direction Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. μT The response you submitted has the wrong sign.° counterclockwise from the +x axisarrow_forward
- O Macmillan Learning The mass of a particular eagle is twice that of a hunted pigeon. Suppose the pigeon is flying north at Vi2 = 16.1 m/s when the eagle swoops down, grabs the pigeon, and flies off. At the instant right before the attack, the eagle is flying toward the pigeon at an angle 0 = 64.3° below the horizontal and a speed of Vi,1 = 37.9 m/s. What is the speed of of the eagle immediately after it catches its prey? What is the magnitude & of the angle, measured from horizontal, at which the eagle is flying immediately after the strike? Uf = II x10 TOOLS Vi.1 Vi,2 m/sarrow_forwardWhat is the equivalent resistance if you connect a 1.7 Ohm, a 9.3 Ohm, and a 22 Ohm resistor in series? (Give your answer as the number of Ohms.)arrow_forwardThree wires meet at a junction. One wire carries a current of 5.2 Amps into the junction, and a second wire carries a current of 3.7 Amps out of the junction. What is the current in the third wire? Give your answer as the number of Amps, and give a positive number if the current in that wire flows out of the junction, or a negative number if the current in that wire flows into the junction.arrow_forward
- What is the equivalent resistance if you connect a 4.5 Ohm, a 6.8 Ohm, and a 15 Ohm resistor in parallel? (Give your answer as the number of Ohms.)arrow_forwardSuppose a heart defibrillator passes 10.5 Amps of current through a patient's torso for 5.0 x 10-3 seconds in order to restore a regular heartbeat. The voltage across the defibrillator is 9800 volts for the entire time that current is flowing. If 7.25 kg of body tissue is involved, with a specific heat of 3500 J/(kg°C), then what is the resulting temperature increase of the person's torso? (Give your answer as the number of degrees C.)arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I₁ = 1.04 A out of the page and the current in the outer conductor is I2 = 2.90 A into the page. Assuming the distance d = 1.00 mm, answer the following. 4 12 (a) Determine the magnitude and direction of the magnetic field at point a. magnitude 208 direction upward (b) Determine the magnitude and direction of the magnetic field at point b. magnitude direction 238 You can approach this problem by finding the field produced by current I₁ and the field produced by I2 and then adding them vectorially. μT downwardarrow_forward
- Shoto, from My Hero Academia, has a power (or a “quirk”) that allows him to make large amounts of ice from nothing. Let us say that due to a fire a 361 kg steel beam is heated to 943.˚C and Shoto creates 390. kg of ice at 0.00˚C around it to cool it down. What is the final temperature of the system after the ice melts and it reaches thermal equilibrium? The specific heat of steel is 502 J/kg˚C. The specific heat of water is 4186 J/kg˚C. The latent heat of fusion for ice is 3.33⋅10^5 J/kg.arrow_forwardA 25.0 cm long organ pipe is filled with air and is open at one end and closed at the other. The speed of sound in air at 0°C is 331 m/s. What is the frequency of the fourth mode of vibration? Multiple Choice О 1,550 Hz О 1,750 Hz О 2,320 Hz О 2,720 Hz О 3,170 Hzarrow_forward23.4 g of coffee beans at room temperature (18.6 °C) is mixed into 316 g of water at 96.8 °C in an effort to make coffee. The entire system is poured in a 363 g ceramic mug. Assume the mug is initally also at room temperature (18.6 °C). What is the final temperature of the mixture? The specific heat of ground coffee beans is 1670 J/kg˚C, the specific heat of water is 4186 J/kg˚C, and the specific heat of the mug is 850. J/kg˚C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning