
Introduction: Plant hormones are chemical molecules produced by plants in extremely low concentration for regulating the growth and development. There are five major hormones involved in the growth process. They are auxin, gibberellin, ethylene, abscisic acid, and cytokinin. Each of these hormones has its own functions at specific locations. The presence of these hormones in a definite amount is very essential for the normal growth and development of the plant.

Answer to Problem 1TYU
Correct answer: In the signal transduction process for the hormone auxin, the molecule ubiquitin tags certain proteins for destruction.
Hence, the correct answer is option (c).
Explanation of Solution
Reason for the correct answer:
General mechanism of action of auxin hormone:
Auxins are a group of related hormones responsible for a wide range of consequences on the growth and development of plants. Within a certain concentration, Auxin stimulates cell elongation in stems and coleoptiles. Auxin inhibits elongation growth by increasing the cell wall extensibility, according to the acid growth hypothesis. The main effects of auxin are to promote cell elongation according to the concentration.
Many plant hormones bind to the receptors which trigger the enzymatic reaction and results in the changes for cell growth and development of the plants. Both external and internal signal triggers the auxin hormone synthesis. The cytosol or the nucleus of the cell contains one receptor with three-dimensional shape (TIR1 receptor) that binds to auxin molecule. As the auxin binds to its receptor, ubiquitin molecule attaches to the repressor molecule and inhibits the auxin response genes. Thereafter, the ubiquitinylated protein is targeted and degraded into peptide fragments in a proteasome. This causes transcription of auxin response gene which acidifies the cell wall of target cells. The acidified target cell walls become more plastic which enables it to expand due to increased force of the cell’s turgor pressure. Thus, the action of auxin hormone causes cell expansion without cell division.
Option (c) is given as “tags certain proteins for destruction”.
The small regulatory protein called ubiquitin attaches to other proteins and are used to tag certain proteins for destruction. This process of tagging is referred to as ubiquitination and it is a post-translational modification. Ubiquitin-mediated proteolysis normally takes place during auxin signaling in plants.
Hence, the correct answer is option (c).
Reasons for the incorrect answers:
Option (a) is given as “absorbs blue light”.
Phototropins are the proteins that absorb blue light and they help to control the photosynthetic efficacy of plants, not auxins.
Hence, option (a) is incorrect.
Option (b) is given as “becomes phosphorylated”.
Phototropins are the blue-light receptors that control the photosynthetic efficacy of plants located at the shoot tips. These proteins become phosphorylated in response to blue light.
Hence, option (b) is incorrect.
Option (d) is given as “interacts antagonistically with gibberellins”.
Gibberellin is a growth-regulating hormone that enhances the elongation of stems and leaves and in the development of fruits. During auxin signaling in plants, the ubiquitin molecule does not antagonistically interact with gibberellins. Instead, ubiquitin-mediated proteolysis takes place in the signal transduction process in auxin.
Hence, option (d) is incorrect.
Option (e) is given as “binds to a receptor in the plant cell’s plasma membrane”.
During auxin signaling in plants, the ubiquitin molecule does not bind to a receptor in the plasma membrane of the plant cell. Instead, ubiquitin-mediated proteolysis takes place in the signal transduction process in auxin.
Hence, option (e) is incorrect.
Hence, options (a), (b), (d), and (e) are incorrect.
As the auxin binds to its receptor, ubiquitin molecule attaches to the repressor molecule in order to target it for destruction.
Want to see more full solutions like this?
Chapter 38 Solutions
EBK BIOLOGY
- You implant an FGF10-coated bead into the anterior flank of a chicken embryo, directly below the level of the wing bud. What is the phenotype of the resulting ectopic limb? Briefly describe the expected expression domains of 1) Shh, 2) Tbx4, and 3) Tbx5 in the resulting ectopic limb bud.arrow_forwardDesign a grafting experiment to determine if limb mesoderm determines forelimb / hindlimb identity. Include the experiment, a control, and an interpretation in your answer.arrow_forwardThe Snapdragon is a popular garden flower that comes in a variety of colours, including red, yellow, and orange. The genotypes and associated phenotypes for some of these flowers are as follows: aabb: yellow AABB, AABb, AaBb, and AaBB: red AAbb and Aabb: orange aaBB: yellow aaBb: ? Based on this information, what would the phenotype of a Snapdragon with the genotype aaBb be and why? Question 21 options: orange because A is epistatic to B yellow because A is epistatic to B red because B is epistatic to A orange because B is epistatic to A red because A is epistatic to B yellow because B is epistatic to Aarrow_forward
- A sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardA sample of blood was taken from the above individual and prepared for haemoglobin analysis. However, when water was added the cells did not lyse and looked normal in size and shape. The technician suspected that they had may have made an error in the protocol – what is the most likely explanation? The cell membranes are more resistant than normal. An isotonic solution had been added instead of water. A solution of 0.1 M NaCl had been added instead of water. Not enough water had been added to the red blood cell pellet. The man had sickle-cell anaemia.arrow_forwardWith reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forward
- With reference to their absorption spectra of the oxy haemoglobin intact line) and deoxyhemoglobin (broken line) shown in Figure 2 below, how would you best explain the reason why there are differences in the major peaks of the spectra? Figure 2. SPECTRA OF OXYGENATED AND DEOXYGENATED HAEMOGLOBIN OBTAINED WITH THE RECORDING SPECTROPHOTOMETER 1.4 Abs < 0.8 06 0.4 400 420 440 460 480 500 520 540 560 580 600 nm 1. The difference in the spectra is due to a pH change in the deoxy-haemoglobin due to uptake of CO2- 2. There is more oxygen-carrying plasma in the oxy-haemoglobin sample. 3. The change in Mr due to oxygen binding causes the oxy haemoglobin to have a higher absorbance peak. 4. Oxy-haemoglobin is contaminated by carbaminohemoglobin, and therefore has a higher absorbance peak 5. Oxy-haemoglobin absorbs more light of blue wavelengths and less of red wavelengths than deoxy-haemoglobinarrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forwardWhich ONE of the following is FALSE regarding haemoglobin? It has two alpha subunits and two beta subunits. The subunits are joined by disulphide bonds. Each subunit covalently binds a haem group. Conformational change in one subunit can be transmitted to another. There are many variant ("mutant") forms of haemoglobin that are not harmful.arrow_forward
- During a routine medical check up of a healthy man it was found that his haematocrit value was highly unusual – value of 60%. What one of the options below is the most likely reason? He will have a diet high in iron. He is likely to be suffering from anaemia. He lives at high altitude. He has recently recovered from an accident where he lost a lot of blood. He has a very large body size.arrow_forwardExplain what age of culture is most likely to produce an endospore?arrow_forwardExplain why hot temperatures greater than 45 degrees celsius would not initiate the sporulation process in endospores?arrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning
- Biology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning




