Concept explainers
Coherent light of wavelength 501.5 nm is sent through two parallel slits in an opaque material. Each slit is 0.700 μm wide. Their centers are 2.80 μm apart. The light then falls on a semicylindrical screen, with its axis at the midline between the slits. We would like to describe the appearance of the pattern of light visible on the screen. (a) Find the direction for each two-slit interference maximum on the screen as an angle away from the bisector of the line joining the slits. (b) How many angles are there that represent two-slit interference maxima? (c) Find the direction for each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits. (d) How many angles are there that represent single-slit interference minima? (e) How many of the angles in part (d) are identical to those in part (a)? (f) How many bright fringes are visible on the screen? (g) If the intensity of the central fringe is Imax, what is the intensity of the last fringe visible on the screen?
(a)
The direction for the each two slit interference as an angle away from the bisector of the line joining the centre of the slits.
Answer to Problem 12P
The possible direction of two slit interference maxima are
Explanation of Solution
Given information: The wavelength of light is
The condition for double slit interference maxima is,
Here
Further solve equation (1) as;
Substitute
For different value of
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
Thus for
For
Substitute
The value of
Conclusion:
Therefore, there are
(b)
The numbers of angles that represents two slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) shows that for zero order there is one angle and for first, second, third, fourth and fifth order there are each two direction for a single that represent the two slit interference maxima
The possible angles are
Conclusion:
Therefore, there are
(c)
The direction of each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits.
Answer to Problem 12P
The direction of each single-slit interference minimum on the screen as an angle away from the bisector of the line joining the slits is.
Explanation of Solution
Given Info: The condition for the interference minima in single slit interference minima is,
Here,
Substitute
For different value of
For
Substitute
Thus for
For
Substitute
The value of
Thus up to second order the single slit interference is possible.
Conclusion:
Therefore, the possible directions are
(d)
The numbers of angles that represents single slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (c) shows that for first order only the single slit interference minima is possible.
The possible angles are
So there are total
Conclusion:
Therefore, there are
(e)
The numbers of angles that are identical for single interference minima and double slit interference maxima.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) and part (c) shows that the angles
So there are total
Conclusion:
Therefore, there are
(f)
The number of bright fringes visible on the screen.
Answer to Problem 12P
There are
Explanation of Solution
The calculation in part (a) and part (c) shows that the angles
So, for the position at
Thus there are
So, there are
Conclusion:
Therefore, there are
(g)
The intensity of the last fringe on the screen in terms of maximum intensity.
Answer to Problem 12P
The intensity of the last fringe is
Explanation of Solution
The formula to calculate the intensity at any angle is,
Here,
The last fringe occurs for the fifth order so the value of
Substitute
Conclusion:
Therefore, the intensity at the last fringe is
Want to see more full solutions like this?
Chapter 38 Solutions
Physics for Scientists and Engineers With Modern Physics
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning