Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 69AP
To determine
The angle of the radio source above the horizon at first maximum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20
m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the
waves arriving at P from antennas A and B?
A
P
X
B
4.594x10-¹ rad
Computer's answer now shown above. You are correct.
Your receipt no. is 158-6031 >
Previous Tries
Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves?
1.203 m
As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference?
Submit Answer Tries 0/6
Submit Answer Incorrect. Tries 1/6 Previous Tries
If observer P continues walking until he reaches antenna A, at how many places along the x…
A microwave is equipped with two sources of microwave light that emit at a frequency of
f = 18.8 GHz. The two sources are housed in an air-filled chamber as shown below. The
spacing between the sources is d = 5.00 cm. The distance from the left source to the left
wall is x, = 17.5 cm. The dimensions of the chamber are height y
x = 84.0 cm.
= 50.0 cm and width
X
y
X,
=
35. Figure P36.35 shows a radio-wave transmitter and a receiver
separated by a distance d 50.0 m and both a distance
h =
35.0 m above the ground. The receiver can receive sig-
nals both directly from the transmitter and indirectly from
signals that reflect from the ground. Assume the ground is
level between the transmitter and receiver and a 180° phase
shift occurs upon reflection. Determine the longest wave-
lengths that interfere (a) constructively and (b) destructively.
h
Transmitter
d
Receiver
Figure P36.35 Problems 35 and 36.
Chapter 37 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 37.2 - Which of the following causes the fringes in a...Ch. 37.3 - Using Figure 36.6 as a model, sketch the...Ch. 37.5 - One microscope slide is placed on top of another...Ch. 37 - Prob. 1OQCh. 37 - Four trials of Youngs double-slit experiment are...Ch. 37 - Suppose Youngs double-slit experiment is performed...Ch. 37 - Prob. 4OQCh. 37 - Prob. 5OQCh. 37 - Prob. 6OQCh. 37 - Prob. 7OQ
Ch. 37 - Prob. 8OQCh. 37 - Prob. 9OQCh. 37 - A film of oil on a puddle in a parking lot shows a...Ch. 37 - Prob. 1CQCh. 37 - Prob. 2CQCh. 37 - Prob. 3CQCh. 37 - Prob. 4CQCh. 37 - Prob. 5CQCh. 37 - Prob. 6CQCh. 37 - Prob. 7CQCh. 37 - Prob. 8CQCh. 37 - Prob. 9CQCh. 37 - Two slits are separated by 0.320 mm. A beam of...Ch. 37 - Prob. 2PCh. 37 - A laser beam is incident on two slits with a...Ch. 37 - Prob. 4PCh. 37 - Prob. 5PCh. 37 - Prob. 6PCh. 37 - Prob. 7PCh. 37 - Prob. 8PCh. 37 - Prob. 9PCh. 37 - Light with wavelength 442 nm passes through a...Ch. 37 - Prob. 11PCh. 37 - Prob. 12PCh. 37 - Prob. 13PCh. 37 - Prob. 14PCh. 37 - Prob. 15PCh. 37 - A student holds a laser that emits light of...Ch. 37 - Prob. 17PCh. 37 - Prob. 18PCh. 37 - Prob. 19PCh. 37 - Prob. 20PCh. 37 - Prob. 21PCh. 37 - Prob. 22PCh. 37 - Prob. 23PCh. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Monochromatic coherent light of amplitude E0 and...Ch. 37 - Prob. 27PCh. 37 - Prob. 28PCh. 37 - Prob. 29PCh. 37 - Prob. 30PCh. 37 - Prob. 31PCh. 37 - Prob. 32PCh. 37 - Prob. 33PCh. 37 - Prob. 34PCh. 37 - Prob. 35PCh. 37 - Prob. 36PCh. 37 - Prob. 37PCh. 37 - Prob. 38PCh. 37 - When a liquid is introduced into the air space...Ch. 37 - Prob. 40PCh. 37 - Prob. 41PCh. 37 - Prob. 42PCh. 37 - Prob. 43PCh. 37 - Prob. 44PCh. 37 - Prob. 45APCh. 37 - Prob. 46APCh. 37 - Prob. 47APCh. 37 - Prob. 48APCh. 37 - Prob. 49APCh. 37 - Prob. 50APCh. 37 - Prob. 51APCh. 37 - In a Youngs interference experiment, the two slits...Ch. 37 - In a Youngs double-slit experiment using light of...Ch. 37 - Prob. 54APCh. 37 - Prob. 55APCh. 37 - Prob. 56APCh. 37 - Prob. 57APCh. 37 - Prob. 58APCh. 37 - Prob. 59APCh. 37 - Prob. 60APCh. 37 - Prob. 61APCh. 37 - Prob. 62APCh. 37 - Prob. 63APCh. 37 - Prob. 64APCh. 37 - Prob. 65APCh. 37 - Prob. 66APCh. 37 - Prob. 67APCh. 37 - Prob. 68APCh. 37 - Prob. 69APCh. 37 - Prob. 70APCh. 37 - Prob. 71CPCh. 37 - Prob. 72CPCh. 37 - Prob. 73CPCh. 37 - Prob. 74CPCh. 37 - Prob. 75CPCh. 37 - Prob. 76CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 36. Figure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d and both a distance h above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180* phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively.arrow_forwardThe next two questions pertain to the same situation. Two antennas located at points A and B are broadcasting radio waves of a certain wavelength λ, perfectly in phase with each other. The two antennas are separated by a distance d = 300 m. An observer is at point P, located on the x-axis, at a distance x=400 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. Another observer is at point Q, located on the y-axis, at a distance y=200 m from A. A d = 300m B x=400 m y y= = 200 m P X 7) For which one of the following wavelength values will the observer at point P detect a maximum signal strength? A) λ = 60 m B) λ = 80 m C) λ = 100 m |D) λ = 120 m E) λ = 140 m 8) If the wavelength of the radio waves used is λ = 50 m, the observer at point Q will see a A) constructive interference B) destructive interference The next two questions pertain to the situation described below.arrow_forwardAn advanced computer sends information to its various parts via infrared light pulses traveling through silicon fibers (n = 3.50). To acquire data from memory, the central processing unit sends a light-pulse request to the memory unit. The memory unit processes the request, then sends a data pulse back to the central processing unit. The memory unit takes 0.50 ns toprocess a request. If the information has to be obtained from memory in 2.00 ns, what is the maximum distance the memory unit can be from the central processing unit?arrow_forward
- The transmitting antenna on a submarine is 5.00 m above the water when the ship surfaces. The captain wishes to transmit a message to a receiver on a 90.0 - m - tall cliff at the ocean shore. If the signal is to be completely polarized by reflection off the ocean surface, how far must the ship be from the shore?arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. What is the phase difference between the waves arriving at P from antennas A and B? Enter your answer in radiansarrow_forwardFigure P24.69 shows d- radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 X 102 m apart. The receiver can receive signals directly from the transmit- ter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a /2 phase shift occurs upon reflection, determine the longest wave- lengths that interfere (a) constructively and (b) destructively. Transmitter Receiver Figure P24.69arrow_forward
- Laser light of wavelength 460 nmnm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has nn = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.75. a)What is the minimum (nonzero) thickness of the coating for which there is maximum transmission of the light into the rod? b)What is the minimum (nonzero) thickness of the coating for which transmission into the rod is minimized?arrow_forwardTwo radio antennas separated by d = 300 m, as shown in Figure P24.7, simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 1 000 m from the center point between the antennas, and its radio receives the signals. (a) If the car is at the position of the second maximum after that at point o when it has traveled a distance of y = 400 m northward, what is the wavelength of the signals? (b) How much farther must the car travel from this position to encounter the next minimum in reception? Hint: Do not use the small angle approximation in this problem.arrow_forward10 mW of light is incident on a piece of GaAs which is 0.2mm thick. The incident light is a mixture of 5mW at λ1=1.553μm and 5mW at λ2=0.828μm. A total of 7mW mixed light exits out of the GaAs. Assume no reflections at the air/GaAs interface and any light generated by recombination won’t exit the GaAs. What are the absorption coefficients, α, for two different wavelengths?arrow_forward
- A monochromatic light of wavelength 316 nm in air is passing through a piece of glass of index of refraction n. The angle of incidence and refraction are 0₁ = 60° and 0₂ = 46° as shown in the figure. What is the speed of light in the glass? (c = 3.00 x 108 m/s) nair = 1 n a) 2.49 x 108 m/s b) 1.82 x 108 m/s c) 3.0 x 108 m/s d) 5.0 x 108 m/s e) None of these is correct. Write your ownarrow_forwardA magnifying glass can focus sunlight enough to heat up paper or dry grass and start a fire. A magnifying glass with a diameter of 4.30 cm has a focal length of 6.70 cm. The mean distance of the Sun from Earth is 1.50 × 1011 m. The mean radius of the Sun is 6.957 × 108 m. If the intensity of the Sun falling on the magnifying glass is 0.850 kW/m2, what is the intensity of the image of the Sun? __kW/m2arrow_forwardIn the lab, you want to use a spectrometer to study the emission spectrum of a gas. This device works by having the light go through a diffraction grating and then carefully measuring the angle at which the light exits the grating. The problem is that the grating that you have is not labeled, so you do not know the spacing. To calibrate the spectrometer, you send a HeNe laser (wavelength 632.8nm) through the grating and observe it to exit at an angle of 37.6° in the second order by this grating. (For obscure technical reasons, the first order is not observable.) Light from the gas is then measured to be deflected by 34.9° in the second order. What is the wavelength of the light that is to be measured?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY