EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
16th Edition
ISBN: 8220100546716
Author: Katz
Publisher: CENGAGE L
Question
Book Icon
Chapter 37, Problem 63PQ

(a)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 5cm.

(a)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 23°, when distance between the gum ball and the friend’s nose is 5cm.

Explanation of Solution

Write the expression for the angle at which two tangent rays diverge.

    tanθ=yD

Here, y is the diameter of the gum ball and D is the distance between the center of the gumball and the tip of your friend’s nose.

For very small angle θ.

    tanθθ

Substitute, θ for tanθ in the above equation.

    θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 5cm for D in equation (I) to find θ.

    θ=2cm5cm=0.4rad=(0.4rad)(180°πrad)=23°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 23°, when distance between the gum ball and the friend’s nose is 5cm.

(b)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 20cm.

(b)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 5.7°, when distance between the gum ball and the friend’s nose is 20cm.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 20cm for D in equation (I) to find θ.

    θ=tan1(2cm20cm)=(0.1rad)(180°πrad)=5.7°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 5.7°, when distance between the gum ball and the friend’s nose is 20cm.

(c)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 100cm.

(c)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is 1.1°, when distance between the gum ball and the friend’s nose is 100cm.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 100cm for D in equation (I) to find θ.

    θ=2cm100cm=0.4rad=0.02rad×(180°πrad)=1.1°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is 1.1°, when distance between the gum ball and the friend’s nose is 100cm.

(d)

To determine

The angle at which the two tangent rays diverge from the tip of the nose when distance between the gum ball and the friend’s nose is 100km.

(d)

Expert Solution
Check Mark

Answer to Problem 63PQ

The angle at which the two tangent rays diverge from the tip of the nose is (1.1×105)°, when distance between the gum ball and the friend’s nose is 100km.

Explanation of Solution

Rewrite equation (I).

  θ=yD                                                                                                                    (I)

Conclusion:

Substitute, 2cm for y and 100km for D in equation (I) to find θ.

    θ=(2cm)(1m100cm)(100km)(1000m1km)=(2×107rad)(180°πrad)=(1.1×105)°

Therefore, the angle at which the two tangent rays diverge from the tip of the nose is (1.1×105)°, when distance between the gum ball and the friend’s nose is 100km.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When an electromagnetic wave is reflected at normal incidence on a perfectly conducting surface, the electric fieldvector of the reflected wave at the reflecting surface is the negative of that of the incident wave.a) Explain why this should be so.b) Show that the superposition of the incident and reflected waves results in a standing wave.c) What is the relationship between the magnetic field vector of the incident and reflected waves at the reflectingsurface?
Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step- down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.
In some places, insect "zappers," with their blue lights, are a familiar sight on a summer's night. These devices use a high voltage to electrocute insects. One such device uses an ac voltage of 3970 V, which is obtained from a standard 120-V outlet by means of a transformer. If the primary coil has 27 turns, how many turns are in the secondary coil? hel lp?

Chapter 37 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 37 - Prob. 4PQCh. 37 - Prob. 5PQCh. 37 - Prob. 6PQCh. 37 - Prob. 7PQCh. 37 - Prob. 8PQCh. 37 - Prob. 9PQCh. 37 - Prob. 10PQCh. 37 - Prob. 11PQCh. 37 - Prob. 12PQCh. 37 - Prob. 13PQCh. 37 - Prob. 14PQCh. 37 - Light rays strike a plane mirror at an angle of...Ch. 37 - Prob. 16PQCh. 37 - Prob. 17PQCh. 37 - Prob. 18PQCh. 37 - Prob. 19PQCh. 37 - Prob. 20PQCh. 37 - Prob. 21PQCh. 37 - Prob. 22PQCh. 37 - Prob. 23PQCh. 37 - Prob. 24PQCh. 37 - Prob. 25PQCh. 37 - Prob. 26PQCh. 37 - Prob. 27PQCh. 37 - Prob. 28PQCh. 37 - A convex mirror with a radius of curvature of 25.0...Ch. 37 - The magnitude of the radius of curvature of a...Ch. 37 - Prob. 31PQCh. 37 - The image formed by a convex spherical mirror with...Ch. 37 - An object is placed 25.0 cm from the surface of a...Ch. 37 - Prob. 34PQCh. 37 - Prob. 35PQCh. 37 - Prob. 36PQCh. 37 - Prob. 37PQCh. 37 - Prob. 38PQCh. 37 - Prob. 39PQCh. 37 - Prob. 40PQCh. 37 - Prob. 41PQCh. 37 - Prob. 42PQCh. 37 - Prob. 43PQCh. 37 - Prob. 44PQCh. 37 - Prob. 45PQCh. 37 - Prob. 46PQCh. 37 - Prob. 47PQCh. 37 - Prob. 48PQCh. 37 - Prob. 49PQCh. 37 - Prob. 50PQCh. 37 - Prob. 51PQCh. 37 - Prob. 52PQCh. 37 - Prob. 53PQCh. 37 - Prob. 54PQCh. 37 - Prob. 55PQCh. 37 - Prob. 56PQCh. 37 - You see the image of a sign through a camera...Ch. 37 - Prob. 58PQCh. 37 - Prob. 59PQCh. 37 - Prob. 60PQCh. 37 - An object is placed midway between two concave...Ch. 37 - Prob. 62PQCh. 37 - Prob. 63PQCh. 37 - Prob. 64PQCh. 37 - Prob. 65PQCh. 37 - Prob. 66PQCh. 37 - Observe your reflection in the back of a spoon....Ch. 37 - Prob. 68PQCh. 37 - A small convex mirror and a large concave mirror...Ch. 37 - Prob. 70PQCh. 37 - Prob. 71PQCh. 37 - Prob. 72PQCh. 37 - Prob. 73PQ
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning