Green light has a wavelength of 500 nm in air. (i) Assume green light is reflected from a mirror with angle of incidence 0°. The incident and reflected waves together constitute a standing wave with what distance from one node to the next node? (a) 1000 nm (b) 500 nm (c) 250 nm (d) 125 nm (e) 62.5 nm (ii). The green light is sent into a Michelson interferometer that is adjusted to produce a central bright circle. How far must the interferometer's moving mirror be shifted to change the center of the pattern into a dark circle? Choose from the same possibilities as in part (i). (iii). The green light is reflected perpendicularly from a thin film of a plastic with an index of refraction 2.00. The film appears bright in the reflected light. How much additional thickness would make the film appear dark?
Green light has a wavelength of 500 nm in air. (i) Assume green light is reflected from a mirror with angle of incidence 0°. The incident and reflected waves together constitute a standing wave with what distance from one node to the next node? (a) 1000 nm (b) 500 nm (c) 250 nm (d) 125 nm (e) 62.5 nm (ii). The green light is sent into a Michelson interferometer that is adjusted to produce a central bright circle. How far must the interferometer's moving mirror be shifted to change the center of the pattern into a dark circle? Choose from the same possibilities as in part (i). (iii). The green light is reflected perpendicularly from a thin film of a plastic with an index of refraction 2.00. The film appears bright in the reflected light. How much additional thickness would make the film appear dark?
Solution Summary: The author explains that the distance of one node from the next is 250nm, which is contradictory.
Green light has a wavelength of 500 nm in air. (i) Assume green light is reflected from a mirror with angle of incidence 0°. The incident and reflected waves together constitute a standing wave with what distance from one node to the next node? (a) 1000 nm (b) 500 nm (c) 250 nm (d) 125 nm (e) 62.5 nm (ii). The green light is sent into a Michelson interferometer that is adjusted to produce a central bright circle. How far must the interferometer's moving mirror be shifted to change the center of the pattern into a dark circle? Choose from the same possibilities as in part (i). (iii). The green light is reflected perpendicularly from a thin film of a plastic with an index of refraction 2.00. The film appears bright in the reflected light. How much additional thickness would make the film appear dark?
What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V?
2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor?
3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA?
4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed?
5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.