University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 37, Problem 37.10E
A meter stick moves past you at great speed. Its motion relative to you is parallel to its long axis. If you measure the length of the moving meter stick to be 1.00 ft (1 ft = 0.3048 m)—for example, by comparing it to a 1-foot ruler that is at rest relative to you—at what speed is the meter stick moving relative to you?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 37 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 37.1 - As a high-speed spaceship flies past you, it fires...Ch. 37.2 - Stanley, who works for the rail system shown in...Ch. 37.3 - Samir (who is standing on the ground) starts his...Ch. 37.4 - A miniature spaceship is flying past you, moving...Ch. 37.5 - (a) In frame S events P1 and P2 occur at the same...Ch. 37.7 - According to relativistic mechanics, when you...Ch. 37.8 - A proton is accelerated from rest by a constant...Ch. 37 - You are standing on a train platform watching a...Ch. 37 - If simultaneity is not an absolute concept, does...Ch. 37 - A rocket is moving to the right at 12 the speed of...
Ch. 37 - A spaceship is traveling toward the earth from the...Ch. 37 - The average life span in the United States is...Ch. 37 - Prob. 37.6DQCh. 37 - Two events occur at the same space point in a...Ch. 37 - A high-speed train passes a train platform. Larry...Ch. 37 - Prob. 37.9DQCh. 37 - A student asserts that a material particle must...Ch. 37 - The speed of light relative to still water is 2.25...Ch. 37 - Prob. 37.12DQCh. 37 - Prob. 37.13DQCh. 37 - Why do you think the development of Newtonian...Ch. 37 - What do you think would be different in everyday...Ch. 37 - Suppose the two lightning bolts shown in Fig....Ch. 37 - The positive muon (), an unstable particle, lives...Ch. 37 - How fast must a rocket travel relative to the...Ch. 37 - A spaceship flies past Mars with a speed of 0.985c...Ch. 37 - The negative pion () is an unstable particle with...Ch. 37 - As you pilot your space utility vehicle at a...Ch. 37 - A spacecraft flies away from the earth with a...Ch. 37 - An alien spacecraft is flying overhead at a great...Ch. 37 - A spacecraft of the Trade Federation rites past...Ch. 37 - A meter stick moves past you at great speed. Its...Ch. 37 - Why Are We Bombarded by Muons? Muons are unstable...Ch. 37 - An unstable particle is created in the upper...Ch. 37 - As measured by an observer on the earth, a...Ch. 37 - A rocket ship flies past the earth at 91.0% of the...Ch. 37 - An observer in frame S is moving to the right...Ch. 37 - Space pilot Mavis zips past Stanley at a constant...Ch. 37 - A pursuit spacecraft from the planet Tatooine is...Ch. 37 - An enemy spaceship is moving toward your...Ch. 37 - Two particles are created in a high-energy...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - Two particles in a high-energy accelerator...Ch. 37 - An imperial spaceship, moving at high speed...Ch. 37 - Tell It to the Judge. (a) How fast must you be...Ch. 37 - Electromagnetic radiation from a star is observed...Ch. 37 - A source of electromagnetic radiation is moving in...Ch. 37 - Relativistic Baseball. Calculate the magnitude of...Ch. 37 - A proton has momentum with magnitude p0 when its...Ch. 37 - When Should You Use Relativity? As you have seen,...Ch. 37 - Prob. 37.29ECh. 37 - An electron is acted upon by a force of 5.00 1015...Ch. 37 - What is the speed of a particle whose kinetic...Ch. 37 - If a muon is traveling at 0.999c, what are its...Ch. 37 - A proton (rest mass 1.67 1027 kg) has total...Ch. 37 - (a) How much work must be done on a particle with...Ch. 37 - An Antimatter Reactor. When a particle meets its...Ch. 37 - Electrons are accelerated through a potential...Ch. 37 - A particle has rest mass 6.64 1027 kg and...Ch. 37 - Creating a Particle. Two protons (each with rest...Ch. 37 - Compute the kinetic energy of a proton (mass 1.67 ...Ch. 37 - What is the kinetic energy of a proton moving at...Ch. 37 - (a) Through what potential difference does an...Ch. 37 - Prob. 37.42ECh. 37 - After being produced in a collision between...Ch. 37 - Inside a spaceship flying past the earth at...Ch. 37 - The starships of the Solar Federation are marked...Ch. 37 - A cube of metal with sides of length a sits at...Ch. 37 - A space probe is sent to the vicinity of the star...Ch. 37 - A muon is created 55.0 km above the surface of the...Ch. 37 - The Large Hadron Collider (LHC). Physicists and...Ch. 37 - The net force F on a particle of mass m is...Ch. 37 - Everyday Time Dilation. Two atomic clocks are...Ch. 37 - The distance to a particular star, as measured in...Ch. 37 - CP erenkov Radiation. The Russian physicist P A....Ch. 37 - Prob. 37.54PCh. 37 - CP A nuclear bomb containing 12.0 kg of plutonium...Ch. 37 - In the earths rest frame, two protons are moving...Ch. 37 - In certain radioactive beta decay processes, the...Ch. 37 - Two events are observed in a frame of reference S...Ch. 37 - One of the wavelengths of light emitted by...Ch. 37 - Albert in Wonderland. Einstein and Lorentz, being...Ch. 37 - Measuring Speed by Radar. A baseball coach uses a...Ch. 37 - Prob. 37.62PCh. 37 - CP In a particle accelerator a proton moves with...Ch. 37 - CP The French physicist Armand Fizeau was the...Ch. 37 - DATA As a research scientist at a linear...Ch. 37 - Prob. 37.66PCh. 37 - DATA You are a scientist studying small aerosol...Ch. 37 - CP Determining the Masses of Stars. Many of the...Ch. 37 - CP Kaon Production. In high-energy physics, new...Ch. 37 - Prob. 37.70CPCh. 37 - An airplane has a length of 60 m when measured at...Ch. 37 - If the airplane of Passage Problem 37.71 has a...Ch. 37 - In our universe, the rest energy of an electron is...Ch. 37 - In the alternate universe, how fast must an object...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Suppose the wheel slows down uniformly, so that || decreases by 8rad/s every 4 s. (The wheel continues spinning...
Tutorials in Introductory Physics
A plank, fixed to a sled at rest in frame S, is of length L0 and makes an angle of 0 with the xaxis. Later, the...
Modern Physics
Consider the following discussion between two students about the cause of the seasons.
Student 1: I know that i...
Lecture- Tutorials for Introductory Astronomy
27. Identify the force that propels a rocket into space.
Conceptual Physical Science (6th Edition)
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You measure the volume of a cube at rest to be V0. You then measure the volume of the same cube as it passes you in a direction parallel to one side of the cube. The speed of the cube is 0.980c, so 5. Is the volume you measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or (e) 25V0?arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardJoe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forward
- Owen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardYou are driving on a freeway at a relativistic speed. Straight ahead of you, a technician standing on the ground turns on a searchlight and a beam of light moves exactly vertically upward, as seen by the technician. As you observe the beam of light, you measure the magnitude of the vertical component of its velocity as (a) equal to c, (b) greater than c, or (c) less than c. If the technician aims the searchlight directly at you instead of upward, you measure the magnitude of the horizontal component of its velocity as (d) equal to c, (e) greater than c, or (f) less than c.arrow_forwardA box is cubical with sides of proper lengths L1 = L2 = L3, as shown in Figure P26.14, when viewed in its own rest frame. If this block moves parallel to one of its edges with a speed of 0.80c past an observer, (a) what shape does it appear to have to this observer? (b) What is the length of each side as measured by the observer? Figure P26.14arrow_forward
- Owen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardAn observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forward
- Suppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardAn atomic clock is placed in a jet airplane. The clock measures a time interval of 3600 s when the jet moves with a speed of 400 m/s. How much longer or shorter a time interval does an identical clock held by an observer on the ground measure? (Hint: For , γ ≈ 1 + v2/2c2.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY