An unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beam’s intensity is reduced in the three following cases. (a) Three filters are in the stack, each with its transmission axis at 45.0° relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0° relative to the preceding filter. (c) Seven filters are in the stack, each with its transmission axis at 15.0° relative to the preceding filter. (d) Comment on comparing the answers to parts (a), (b), and (c).
(a)

Answer to Problem 32P
Explanation of Solution
Given info: The number of the polarizing filters is
Here,
When an unpolarized light is passed through a polarizing filter intensity is reduced to half. So after passing through the first polarizer the intensity of the light becomes half.
Here,
The angle between the transmission axis of second polarizer and the first polarizer is
Here,
The third polarizing filter and the second polarizing filter has the same
Therefore the final intensity after three polarizing filters is,
Substitute
Substitute
From equation (5), a general formula for the calculation of intensity when light is passed through
Here,
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, the fraction by which the intensity is reduced is
(b)

Answer to Problem 32P
Explanation of Solution
Given info: The number of filters are
From equation (6) the formula to calculate when there are
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, The fraction by which the intensity is reduced is
(c)

Answer to Problem 32P
Explanation of Solution
Given info: The number of filters are
From equation (6) the formula to calculate when there are
Substitute
Therefore the absorbed intensity is
Conclusion:
Therefore, the fraction by which the intensity is reduced is
(d)

Answer to Problem 32P
Explanation of Solution
From equation (7), (8) and (9), it is evident that, as the number of polarizing filters increased the fraction of absorbed was decreased. For the case of
Conclusion:
Therefore, the intensity of light can be increased by increasing the number of stacks of polarizing filters by decreasing the angle between their transmission axis.
Want to see more full solutions like this?
Chapter 37 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





