PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
10th Edition
ISBN: 9781337888462
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 37, Problem 14P
To determine
The appropriate telescope to have better resolved image.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H5.
A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight.
Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?
Sometime around 2022, astronomers at the European Southern Observatory hope to begin using the E-ELT(European Extremely Large Telescope), which is planned to have a primary mirror 42 m in diameter. Let us assume that the light it focuses has a wavelength of 550 nm. (1 light-year = 9.461×10^15 m)
Note: Jupiter's Diameter dj=1.43×10^8 m
1)What is the most distant Jupiter-sized planet the telescope could resolve, assuming it operates at the diffraction limit? (Express your answer to two significant figures.)
2)What is the most distant Jupiter-sized planet the telescope could resolve, assuming it operates at the diffraction limit? (Express your answer to two significant figures.)
3)The nearest known exoplanets (planets beyond the solar system) are around 20 light-years away. What would have to be the minimum diameter of an optical telescope to resolve a Jupiter-sized planet at that distance using light of wavelength 550 nm? (Express your answer to two significant figures.)
One way that astronomers detect planets outside of our solar system (called exoplanets) is commonly referred to as the radial velocity method. This relies on the __________ ___________ to cause shifts in the spectral lines of stars as the stars perform tiny orbits around the center of mass of the host star and its orbiting planets. Those tiny orbits cause the stars to periodically (and therefore predictably) move closer to and further away from our solar system. Luckily, this method only relies on the motion of the star; its physical distance from us does not impact the resulting shifts.
Chapter 37 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
Ch. 37.2 - Suppose the slit width in Figure 37.4 is made half...Ch. 37.3 - Cats eyes have pupils that can be modeled as...Ch. 37.3 - Suppose you are observing a binary star with a...Ch. 37.4 - Ultraviolet light of wavelength 350 nm is incident...Ch. 37.6 - A polarizer for microwaves can be made as a grid...Ch. 37.6 - You are walking down a long hallway that has many...Ch. 37 - Heliumneon laser light ( = 632.8 nm) is sent...Ch. 37 - From Equation 37.2, find an expression for the...Ch. 37 - Light of wavelength 540 nm passes through a slit...Ch. 37 - In Figure 37.7, show mathematically how many...
Ch. 37 - Assume light of wavelength 650 nm passes through...Ch. 37 - What If? Suppose light strikes a single slit of...Ch. 37 - A diffraction pattern is formed on a screen 120 cm...Ch. 37 - Coherent light of wavelength 501.5 nm is sent...Ch. 37 - The objective lens of a certain refracting...Ch. 37 - Yellow light of wavelength 589 nm is used to view...Ch. 37 - What is the approximate size of the smallest...Ch. 37 - A heliumneon laser emits light that has a...Ch. 37 - To increase the resolving power of a microscope,...Ch. 37 - Prob. 14PCh. 37 - Impressionist painter Georges Seurat created...Ch. 37 - Narrow, parallel, glowing gas-filled tubes in a...Ch. 37 - Consider an array of parallel wires with uniform...Ch. 37 - Three discrete spectral lines occur at angles of...Ch. 37 - A grating with 250 grooves/mm is used with an...Ch. 37 - Show that whenever white light is passed through a...Ch. 37 - Light from an argon laser strikes a diffraction...Ch. 37 - A wide beam of laser light with a wavelength of...Ch. 37 - You are working as a demonstration assistant for a...Ch. 37 - Prob. 24PCh. 37 - Prob. 25PCh. 37 - Prob. 26PCh. 37 - Prob. 27PCh. 37 - Why is the following situation impossible? A...Ch. 37 - The critical angle for total internal reflection...Ch. 37 - For a particular transparent medium surrounded by...Ch. 37 - Prob. 31PCh. 37 - An unpolarized beam of light is incident on a...Ch. 37 - In a single-slit diffraction pattern, assuming...Ch. 37 - Laser light with a wavelength of 632.8 nm is...Ch. 37 - Prob. 35APCh. 37 - Two motorcycles separated laterally by 2.30 m are...Ch. 37 - The Very Large Array (VLA) is a set of 27 radio...Ch. 37 - Two wavelengths and + (with ) are incident on...Ch. 37 - Review. A beam of 541-nm light is incident on a...Ch. 37 - Prob. 40APCh. 37 - Prob. 41APCh. 37 - Prob. 42APCh. 37 - A pinhole camera has a small circular aperture of...Ch. 37 - Prob. 44APCh. 37 - Prob. 45APCh. 37 - (a) Light traveling in a medium of index of...Ch. 37 - The intensity of light in a diffraction pattern of...Ch. 37 - Prob. 48APCh. 37 - Two closely spaced wavelengths of light are...Ch. 37 - A spy satellite can consist of a large-diameter...Ch. 37 - Prob. 51CPCh. 37 - In Figure P37.52, suppose the transmission axes of...Ch. 37 - Consider a light wave passing through a slit and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- There is one part to this question. I need to know the cm. Thank you!arrow_forwardWhich of the following statements are true? Choose all that apply. If light from a star passes through an exoplanet's atmosphere, we can look at the absorption spectra to determine what elements & compounds are in the atmosphere. For a telescope, increasing fe will decrease the actual size of the image seen by the person looking through the telescope. In crown glass, the index of refraction for red light is 1.512 and for orange light it is 1.514. Thus in crown glass, red light is faster than orange light. If unpolarized light is incident on a polarizer, 50% will pass through. The glasses for nearsighted people create real images for them to see. The smaller the diameter of an optic is, the larger the minimum angle it can discern is.arrow_forwardWhich of the following statements are true? Choose all that apply. If light from a star passes through an exoplanet's atmosphere, we can look at the absorption spectra to determine what elements & compounds are in the atmosphere. The reason astronomers want telescopes with large primary mirrors is to gather as much light as possible. In crown glass, the index of refraction for red light is 1.512 and for yellow light it is 1.518. Thus in crown glass, red light is slower than yellow light. If the axes of two polarizers are anti-parallel to each other, then no light will get through. The glasses for nearsighted people create real images for them to see. The larger the diameter of an optic is, the smaller the minimum angle it can discern is.arrow_forward
- The planet Uranus was discovered in 1781, and Neptune, the next planet outward from the Sun, was discovered in 1846. Imagine you're an astronomer in 1846, and you start wondering if there's another planet out beyond Neptune. You decide to try and discover its existence using the same method that was used for Neptune. How will you do this? Group of answer choices You'll recruit a large number of astronomers to use their telescopes to carefully scan the sky in directions that are far from the ecliptic. The regions around the north and south celestial poles will probably be the best "hunting grounds" for the new planet. You'll examine Uranus and Neptune very carefully, on every clear night, for several years, to see if you can find any evidence that sunlight has been reflected off of the `new' planet, then off of Uranus or Neptune, before arriving on Earth. On rare occasions when Neptune passes in front of the Sun, as seen from Earth, you'll look carefully at the Sun (with a safe…arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardVoyager 2. When the Voyager 2 spacecraft was approaching towards its Neptune encounter in 1989, it was 4.5 × 10° km away from the earth. Its radio transmitter, with which it communicated with us (and we communicated with it), broadcast with a mere 22 Watt of power at the S-band (2.1 GHz). (Your home wi-fi router emits around 2 Watt at 2.4 GHz wi-fi band). Assuming the Voyager transmitter broadcast equally in all directions, (a) What signal intensity was received on the earth? (b) What electric and magnetic field amplitudes were detected? (c) How many 2.1 GHz photons were arriving per second on a radio-receiver antenna with a circular cross-section of diameter 34 meters? Two counter-propagating plane waves (a) Let E(z, t) = E0 cos(kz – wt)â + E, cos(kz + wt)x. Write E(z, t) in simpler form and find the associated magnetic field. (b) For the fields in part (a), find the instantaneous and time-averaged electric and magnetic field energy densities. (c) Let E(z, t) = E, cos(kz – wt)x + E,…arrow_forward
- Suppose you send a probe to land on Mercury, and the probe transmits radio signals to earth at a wavelength of 52.0000 cm. You listen for the probe when Mercury is moving away from Earth at its full orbital velocity of 48 km/s around the Sun. What wavelength (in cm) would you have to tune your radio telescope to detect that signal? Use the doppler shift formula Note: the speed of light is 3.0 ✕ 105 km/s. Give your answer to at least four decimal places.)arrow_forwardhelpp plzarrow_forwardWhen astronomers found the first giant planets with orbits of only a few days, they did not know whether those planets were gaseous and liquid like Jupiter or rocky like Mercury. The observations of HD 209458 settled this question because observations of the transit of the star by this planet made it possible to determine the radius of the planet. Use the data given in the text to estimate the density of this planet, and then use that information to explain why it must be a gas giant.arrow_forward
- While doing a transit study, you find an exoplanet around a nearby Sun-like star. The time between transits is P= 32days. During a transit, the time from first to second contact is t2−t1= 30minutes, and the time from fist to third contact is t3−t1= 5hours. The depth of the transit is δF/F= 0.01. During follow-up radial velocity measurements of the star, you find that its peak radial velocity is vr= 65m s−1. What is the radius of the planet? What is the mass of the planet? What is the semimajor axis of the planet’s orbit?arrow_forwardWhat diameter telescope is needed to resolve the separation between an Earth-like planet and its star at 550 nm if the linear separation between them is 1 AU and the star system is 1 pc from Earth?arrow_forward(a) Auroras have been observed near the magnetic poles of Uranus. (i) Explain how these lights are produced. (ii) While searching for the auroras of Uranus, an orbiting satellite registered the spectral lines. These are emitted by hydrogen atoms during the transition from the first excited state to the ground state. Calculate the wavelength of this radiation and indicate the region of the electromagnetic spectrum in which the satellite made the observation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning