Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 36, Problem 90AP

(a)

To determine

The equation relating the focal length f of the lens to the object distance p1 .

(a)

Expert Solution
Check Mark

Answer to Problem 90AP

The equation relating the focal length f of the lens to the object distance p1 is 1f=1p1+11.50mp1 .

Explanation of Solution

Given info: The distance between the candle and the wall is 1.50m . The distance by which the lens is moved is 90.0cm . The focal length of the lens is f , the object distance is p1 .

Write the expression of lens equation.

1f=1p1+1q1 (1)

Here,

q1 is the distance of image from the lens.

The sum of image and object distance is,

p1+q1=1.50mq1=1.50mp1

Substitute 1.50mp1 for q1 in equation (1).

1f=1p1+11.50mp1 . (2)

Conclusion:

Therefore, the equation relating the focal length f of the lens to the object distance p1 is 1f=1p1+11.50mp1 .

(b)

To determine

The equation relating the focal length f of the lens to the object distance p1 .

(b)

Expert Solution
Check Mark

Answer to Problem 90AP

The equation relating the focal length f of the lens to the object distance p1 is 1f=1p1+0.900m+10.600mp1 .

Explanation of Solution

Given info: The distance between the candle and the wall is 1.50m . The distance by which the lens is moved is 90.0cm . The focal length of the lens is f , the object distance is p1 .

Write the expression of lens equation.

1f=1p2+1q2 (3)

Here,

p2 is the final object distance.

q2 is the final image distance.

The final distance of object is,

p2=p1+90cm×102m1cm=p1+0.900m

The final distance of image is,

q2=q190cm×102m1cm=q10.900m

Substitute 1.50mp1 for q1 in above equation.

q2=1.50mp10.900m=0.600mp1

Substitute 0.600mp1 for q2 and p1+0.900m for p2 in equation (3).

1f=1p1+0.900m+10.600mp1 (4)

Thus, the equation relating the focal length f of the lens to the object distance p1 is 1f=1p1+0.900m+10.600mp1 .

Conclusion:

Therefore, the equation relating the focal length f of the lens to the object distance p1 is 1f=1p1+0.900m+10.600mp1 .

(c)

To determine

The value of p1 .

(c)

Expert Solution
Check Mark

Answer to Problem 90AP

The value of p1 is 0.30m .

Explanation of Solution

Given info: The distance between the candle and the wall is 1.50m . The distance by which the lens is moved is 90.0cm . The focal length of the lens is f , the object distance is p1 .

Compare equation (2) and (4).

1p1+11.50mp1=1p1+0.900m+10.600mp11.50mp1+p2p1(1.50mp1)=0.600mp1+p1+0.900m(p1+0.900m)(0.600mp1)p1(1.50mp1)=(p1+0.900m)(0.600mp1)p1=0.30m

Conclusion:

Therefore, the value of p1 is 0.30m .

(d)

To determine

The focal length of the lens.

(d)

Expert Solution
Check Mark

Answer to Problem 90AP

The focal length of the lens is 0.240m .

Explanation of Solution

Given info: The distance between the candle and the wall is 1.50m . The distance by which the lens is moved is 90.0cm . The focal length of the lens is f , the object distance is p1 .

The equation relating the focal length f of the lens to the object distance p1 is,

1f=1p1+11.50mp1

Substitute 0.30m for p1 in above equation.

1f=10.30m+11.50m0.30mf=0.240m

Thus, the focal length of the lens is 0.240m .

Conclusion:

Therefore, the focal length of the lens is 0.240m .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 36 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 36 - Prob. 3OQCh. 36 - Prob. 4OQCh. 36 - Prob. 5OQCh. 36 - Prob. 6OQCh. 36 - Prob. 7OQCh. 36 - Prob. 8OQCh. 36 - Prob. 9OQCh. 36 - Prob. 10OQCh. 36 - Prob. 11OQCh. 36 - Prob. 12OQCh. 36 - Prob. 13OQCh. 36 - Prob. 14OQCh. 36 - Prob. 1CQCh. 36 - Prob. 2CQCh. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - Prob. 9CQCh. 36 - Prob. 10CQCh. 36 - Prob. 11CQCh. 36 - Prob. 12CQCh. 36 - Prob. 13CQCh. 36 - Prob. 14CQCh. 36 - Prob. 15CQCh. 36 - Prob. 16CQCh. 36 - Prob. 17CQCh. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10PCh. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - A concave spherical mirror has a radius of...Ch. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - A simple model of the human eye ignores its lens...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71APCh. 36 - Prob. 72APCh. 36 - Prob. 73APCh. 36 - The distance between an object and its upright...Ch. 36 - Prob. 75APCh. 36 - Prob. 76APCh. 36 - Prob. 77APCh. 36 - Prob. 78APCh. 36 - Prob. 79APCh. 36 - Prob. 80APCh. 36 - Prob. 81APCh. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 83APCh. 36 - Prob. 84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Prob. 86APCh. 36 - Prob. 87APCh. 36 - Prob. 88APCh. 36 - Prob. 89APCh. 36 - Prob. 90APCh. 36 - Prob. 91APCh. 36 - Prob. 92APCh. 36 - Prob. 93CPCh. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Prob. 95CPCh. 36 - Prob. 96CPCh. 36 - Prob. 97CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY