Concept explainers
The transition that results in the spectral lines.
Answer to Problem 65P
The transition from
Explanation of Solution
Given data:
The given values of the wavelength
Formula:
The expression to determine the energy
The expression to determine the wavelength of the
The expression for the energy difference
Calculation:
The expression for the energy difference
The wavelength of the
Solve further as,
From above the table for the values of the final energy state for different values of the initial energy state is shown in Table 1
The required table is shown in Table 1
Table 1
From above table it is clear that the transition is produced from state
The state of transition when the for wavelength of
From above the table for the values of the final energy state for different values of the initial energy state is shown in Table 2
The required table is shown in Table 2
Table 2
From above table it is clear that the transition is produced from state
The state of transition when the for wavelength of
From above the table for the values of the final energy state for different values of the initial energy state is shown in Table 3
The required table is shown in Table 3
Table 3
From above table it is clear that the transition is produced from state
Conclusion:
Therefore, the transition from
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers
- In extreme-temperature environments, such as those existing in a solar corona, atoms may be ionized by undergoing collisions with other atoms. One example of such ionization in the solar corona is the presence of C5+ ions, detected in the Fraunhofer spectrum. (a) By what factor do the energies of the C5+ ion scale compare to the energy spectrum of a hydrogen atom? (b) What is the wavelength of the first line in the Paschen series of C5+ ? (c) In what part of the spectrum are these lines located?arrow_forwardMeasurements indicate that an atom remains in an excited state for an average time of 50.0 ns before making a transition to the ground state with the simultaneous emission of a 2.1-eV photon. (a) Estimate the uncertainty in the frequency of the photon. (b) What fraction of the photon's average frequency is this?arrow_forwardAtoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is C+5, a carbon atom with only a single electron. (a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen? (b) What is the wavelength of the first line in this ion's Paschen series? (c) What type of EM radiation is this?arrow_forward
- A hydrogen atom is in the ground state. It absorbs energy and makes نقطة واحدة a transition to the n = 3 excited state. The atom returns to the ground state by emitting two photons. What are their ?wavelengths None of these O 5.66x10^-7 m and 2.12x10^-7 m O 6.65×10^-7 m and 2.21×10^-7 m 6.56×10^-7 m and 1.22×10^-7 m Oarrow_forwardA photoelectron is emitted from K shell (n = 1) of a carbon atom, and an election in L shell (n = 2) moves down to the vacancy in K shell. What is the wavelength, in the unit of nm, of the photon emitted during this transition? Use for the energy difference between two states in an atom. E0 = 13.6 eV and atomic number of carbon is Z = 12. Use σ = 1 for the transition to K shell and σ = 7.4 for the transition to L shellarrow_forwardA hydrogen atom has its electron in the n-3 state. How much energy would have to be absorbed by the atom for it to become ionized from this level? What is the frequency of the photon that could produce this result? An atom has 46 electrons. What is the smallest value of n needed so that all 46 electrons occupy the lowest possible quantum states consistent with the Pauli exclusion principle? O 1.51 eV 3.65 x 10^14 Hz, n = 5 O 1.51 eV 3.93 x 10^14 Hz. n=5 O 1.58 eV 3.93 x 10^14 Hz, n=5 1.51 eV 3.65 x 10^14 Hz. n-4 O 144 eV 3.65 x 10^14 Hz, n=6arrow_forward
- The L series of the characteristic x-ray spectrum of tungsten contains wavelengths of 0.1099 nm and 0.1282 nm. The L-shell ionization energy is 11.544 keV. Which x-ray wavelength corresponds to an N → L transition? Determine the ionization energies of the M and N shells: If the incident electrons were accelerated through a 40.00 keV potential difference before striking the target, find the shortest wavelength of the emitted radiation:arrow_forwardThe first five energy levels of the hydrogen atom are at −13.6 eV, −3.4 eV,−1.51 eV, −0.85 eV, and −0.54 eV. The emission spectrum of a hydrogen plasma lamp is a set of bright lines corresponding to all the possible transitions between these five levels.Sketch the far ultraviolet part of the spectrum you would expect from 80 nm wavelength to 130 nm. You should provide an x-axis with tickmarks and labels in nm, and label each brightline with its wavelength. Show your calculations of the wavelengths.arrow_forwardWhat is the final energy state of an H atom that transitions from the n=4 state and emits a photon with λ = 1.875 μm? n = 2 n = 1 n = 3arrow_forward
- For a hydrogen-like atom (the atom contains only one electron, like singly ionized He, doubly ionized Lithium, etc.), the energy levels are given by En = -Z2(13.6)/n2 eV where Z is the atomic number. If an electron in a doubly ionized Lithium atom jumps from the 2nd excited state to the ground state, what would be the wavelength of the emitted photon? A) 3.21 nm B) 3.21 pm C) 6.42 pm D) none of these.arrow_forwardThe characteristic K, and K, lines for chromium have wavelengths of 0.229 nm and 0.208 nm, respectively. What is the ratio of the energy difference between the levels in chromium involved in the production of these two lines? ΔΕ. ΔΕ AEarrow_forwardAn electron undergoes a transition from the 3rd energy level to the 1st energy level in a hydrogen atom. The wavelength of the radiation associated with this transition is a.bc x 10* d m. Record abcd. Selected Energy Levels for Hydrogen -0.544 eV -0.850 eV -1.51 eV -3.40 eV N=4 N=3 N=2 -13.6 eVarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning