
Concept explainers
(a)
The total number of electron state for the given principal quantum number.
(a)

Answer to Problem 32P
The total number of electron state is
Explanation of Solution
Given:
The principal quantum number is
Formula used:
The expression to calculate the possible values of orbital number is given by,
Here
The expression to calculate the possible values of magnetic orbital quantum number is given by,
Here
Calculation:
The possible values of the orbital number is calculated as,
So, the possible value of the orbital numbers are
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The different possible combinations of
Table 1
The possible number of combination is
Conclusion:
Therefore, the total number of electron states is
(b)
The total number of electron state for the given principal quantum number.
(b)

Answer to Problem 32P
The total number of electron state is
Explanation of Solution
Given:
The principal quantum number is
Formula used:
The expression to calculate the possible values of orbital number is given by,
Here
The expression to calculate the possible values of magnetic orbital quantum number s given by,
Here
Calculation:
The possible values of the orbital number is calculated as,
So, the possible value of the orbital numbers are
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The possible values of the magnetic orbital quantum number for
So, the possible value of the magnetic orbital numbers is
The different possible combinations of
Table 2
The possible number of combination is
Conclusion:
Therefore, the total number of electron states is
Want to see more full solutions like this?
Chapter 36 Solutions
Physics for Scientists and Engineers
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





