Physics for Scientists and Engineers With Modern Physics
Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 36, Problem 55P
To determine

The difference in positions of two rays crossing the principal axis.

Expert Solution & Answer
Check Mark

Answer to Problem 55P

The difference in positions of two rays crossing the principal axis is 21.3cm_.

Explanation of Solution

The following figure gives the ray diagram of the two rays.

Physics for Scientists and Engineers With Modern Physics, Chapter 36, Problem 55P

Write the expression to find the angle of incidence of the first ray.

    θ1=sin1(h1R)                                                                                                            (I)

Here, h1 is the distance of the first ray from the principle axis before passing through the lens.

Write the relation between the angle of incidence of the first ray and the second ray.

    1.00sinθ2=1.60sinθ1                                                                                              (II)

Write the expression for the focal length of the first ray

    f1=h1tan(θ2θ1)                                                                                                    (III)

Write the expression for the distance crossed by the principal axis from the vertex by the first ray.

    x1=f1R(1cosθ1)                                                                                             (IV)

Write the expression to find the angle of incidence of the second ray.

    θ1=sin1(h2R)                                                                                                         (V)

Here, h2 is the distance of the second ray from the principle axis before passing through the lens.

Write the relation between the angle of incidence of the first ray and the second ray.

    1.00sinθ2=1.60sinθ1                                                                                             (VI)

Write the expression for the focal length of the second ray

    f2=h2tan(θ2θ1)                                                                                                   (VII)

Write the expression for the distance crossed by the principal axis from the vertex by the second ray.

    x2=f2R(1cosθ2)                                                                                         (VIII)

Write the expression for the difference in positions of two rays crossing the principal axis .

    Δx=x1x2                                                                                                            (IX)

Conclusion:

Substitute 0.500cm for h1 and 20.0cm for R in equation (I).

    θ1=sin1(0.500cm20.0cm)=1.43°

Substitute sin1(h1R) for θ1, 0.500cm for h1 and 20.0cm for R in equation (II).

    1.00sinθ2=1.60sin(sin1(0.500cm20.0cm))θ2=2.29°

Substitute 0.500cm for h1, 1.43° for θ1 and 2.29° for θ2 in equation (III).

    f1=0.500cmtan(2.29°1.43°)=33.3cm

Substitute 33.3cm for f1, 1.43° for θ1 and 20.0cm for R in equation (IV).

    x1=33.3cm(20.0cm)(1cos1.43°)=33.3cm0.00625cm=33.3cm

Substitute 12.0cm for h2 and 20.0cm for R in equation (V).

    θ1=sin1(12.0cm20.0cm)=36.9°

Substitute sin1(h2R) for θ1, 12.0cm for h2 and 20.0cm for R in equation (VI).

    1.00sinθ2=1.60sin(sin1(12.0cm20.0cm))θ2=73.7°

Substitute 12.0cm for h2, 36.9° for θ1 and 73.7° for θ2 in equation (VII).

    f2=12.0cmtan(73.7°36.9°)=16.0cm

Substitute 16.0cm for f2, 36.9° for θ1 and 20.0cm for R in equation (VIII).

    x2=(16.0cm)(20.0cm)(1cos36.9°)=12.0cm

Substitute 33.3cm for x1 and 12.0cm for x2 in equation (IX).

    Δx=33.3cm12.0cm=21.3cm

Therefore, the difference in positions of two rays crossing the principal axis is 21.3cm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis
An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Tread

Chapter 36 Solutions

Physics for Scientists and Engineers With Modern Physics

Ch. 36 - Prob. 3OQCh. 36 - Prob. 4OQCh. 36 - Prob. 5OQCh. 36 - Prob. 6OQCh. 36 - Prob. 7OQCh. 36 - Prob. 8OQCh. 36 - Prob. 9OQCh. 36 - Prob. 10OQCh. 36 - Prob. 11OQCh. 36 - Prob. 12OQCh. 36 - Prob. 13OQCh. 36 - Prob. 14OQCh. 36 - Prob. 1CQCh. 36 - Prob. 2CQCh. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - Prob. 9CQCh. 36 - Prob. 10CQCh. 36 - Prob. 11CQCh. 36 - Prob. 12CQCh. 36 - Prob. 13CQCh. 36 - Prob. 14CQCh. 36 - Prob. 15CQCh. 36 - Prob. 16CQCh. 36 - Prob. 17CQCh. 36 - Prob. 1PCh. 36 - Prob. 2PCh. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Prob. 7PCh. 36 - Prob. 8PCh. 36 - Prob. 9PCh. 36 - Prob. 10PCh. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - Prob. 14PCh. 36 - Prob. 15PCh. 36 - Prob. 16PCh. 36 - Prob. 17PCh. 36 - Prob. 18PCh. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - A concave spherical mirror has a radius of...Ch. 36 - Prob. 23PCh. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - Prob. 30PCh. 36 - Prob. 31PCh. 36 - Prob. 32PCh. 36 - Prob. 33PCh. 36 - Prob. 34PCh. 36 - Prob. 35PCh. 36 - Prob. 36PCh. 36 - Prob. 37PCh. 36 - Prob. 38PCh. 36 - Prob. 39PCh. 36 - Prob. 40PCh. 36 - Prob. 41PCh. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - Prob. 43PCh. 36 - Prob. 44PCh. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - Prob. 46PCh. 36 - Prob. 47PCh. 36 - Prob. 48PCh. 36 - Prob. 49PCh. 36 - Prob. 50PCh. 36 - Prob. 51PCh. 36 - Prob. 52PCh. 36 - Prob. 53PCh. 36 - Prob. 54PCh. 36 - Prob. 55PCh. 36 - Prob. 56PCh. 36 - Prob. 57PCh. 36 - Prob. 58PCh. 36 - Prob. 59PCh. 36 - Prob. 60PCh. 36 - Prob. 61PCh. 36 - Prob. 62PCh. 36 - Prob. 63PCh. 36 - A simple model of the human eye ignores its lens...Ch. 36 - Prob. 65PCh. 36 - Prob. 66PCh. 36 - Prob. 67PCh. 36 - Prob. 68PCh. 36 - Prob. 69PCh. 36 - Prob. 70PCh. 36 - Prob. 71APCh. 36 - Prob. 72APCh. 36 - Prob. 73APCh. 36 - The distance between an object and its upright...Ch. 36 - Prob. 75APCh. 36 - Prob. 76APCh. 36 - Prob. 77APCh. 36 - Prob. 78APCh. 36 - Prob. 79APCh. 36 - Prob. 80APCh. 36 - Prob. 81APCh. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 83APCh. 36 - Prob. 84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Prob. 86APCh. 36 - Prob. 87APCh. 36 - Prob. 88APCh. 36 - Prob. 89APCh. 36 - Prob. 90APCh. 36 - Prob. 91APCh. 36 - Prob. 92APCh. 36 - Prob. 93CPCh. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Prob. 95CPCh. 36 - Prob. 96CPCh. 36 - Prob. 97CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY