Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 36, Problem 43EAP
The diameter of the solar system is 10 light hours. A spaceship crosses the solar system in 15 hours, as measured on earth. How long, in hours, does the passage take according to passengers on the spaceship?
Hint: c = 1 light hour per hour.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A light-year is a measure of the astronomical distance that light traverses in a vacuum in 1 year.
(a) How many kilometers does light traverse in 1 ly?
km
(b) What is the speed of light c in terms of ly per year.
ly/y
(c) Express your answer from (b) in terms of feet per nanosecond.
ft/ns
In the movie Interstellar, the main characters are on a planet where 1 hour = 7 years on Earth. If you are 30 years old on Earth how many hours have passed by on the planet?
All of the stars of the Big Dipper (part of the constellation Ursa Major) may appear to be the same distance from the earth, but in fact they are very far from each other. Figure shows the distances from the earth to each of these stars. The distances are given in light-years (ly), the distance that light travels in one year. One light-year equals 9.461 * 1015 m. (a) Alkaid and Merak are 25.6 apart in the earth’s sky. In a diagram, show the relative positions of Alkaid, Merak, and our sun. Find the distance in light-years from Alkaid to Merak. (b) To an inhabitant of a planet orbiting Merak, how many degrees apart in the sky would Alkaid and our sun be?
Chapter 36 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 36 - Prob. 1CQCh. 36 - Teenagers Sam and Tom are playing chicken in their...Ch. 36 - Prob. 3CQCh. 36 - Prob. 4CQCh. 36 - Prob. 5CQCh. 36 - Prob. 6CQCh. 36 - Prob. 7CQCh. 36 - Prob. 8CQCh. 36 - A 100-m-long train is heading for an 80-m-long...Ch. 36 - Prob. 10CQ
Ch. 36 - Event A occurs at spacetime coordinates (300 m, 2...Ch. 36 - A firecracker explodes in reference frame S at t =...Ch. 36 - At t = 1.0 s, a firecracker explodes at x = 10 m...Ch. 36 - A newspaper delivery boy is riding his bicycle...Ch. 36 - A baseball pitcher can throw a ball with a speed...Ch. 36 - Prob. 5EAPCh. 36 - Prob. 6EAPCh. 36 - Your job is to synchronize the clocks in a...Ch. 36 - Bjorn is standing at x = 600 m. Firecracker 1...Ch. 36 - Prob. 9EAPCh. 36 - You are standing at x 9.0 km and your assistant is...Ch. 36 - Prob. 11EAPCh. 36 - Prob. 12EAPCh. 36 - Prob. 13EAPCh. 36 - Prob. 14EAPCh. 36 - Prob. 15EAPCh. 36 - a. At what speed, as a fraction of c, must a...Ch. 36 - Prob. 17EAPCh. 36 - At what speed, in m/s, would a moving clock lose...Ch. 36 - Prob. 19EAPCh. 36 - Prob. 20EAPCh. 36 - 21. At what speed, as a fraction of c. will a...Ch. 36 - Prob. 22EAPCh. 36 - Prob. 23EAPCh. 36 - Prob. 24EAPCh. 36 - Prob. 25EAPCh. 36 - 26. A rocket travels in the x-direction at speed...Ch. 36 - Prob. 27EAPCh. 36 - Prob. 28EAPCh. 36 - Prob. 29EAPCh. 36 - Prob. 30EAPCh. 36 - A laboratory experiment shoots an electron to the...Ch. 36 - Prob. 32EAPCh. 36 - Prob. 33EAPCh. 36 - Prob. 34EAPCh. 36 - Prob. 35EAPCh. 36 - Prob. 36EAPCh. 36 - Prob. 37EAPCh. 36 - At what speed, as a fraction of c, must an...Ch. 36 - At what speed, as a fraction of c, is a particle’s...Ch. 36 - At what speed, as a fraction of c, is a particle’s...Ch. 36 - Prob. 41EAPCh. 36 - Prob. 42EAPCh. 36 - The diameter of the solar system is 10 light...Ch. 36 - A 30-m-long rocket train car is traveling from Los...Ch. 36 - Prob. 45EAPCh. 36 - Two events in reference frame S occu 10 µs apart...Ch. 36 - Prob. 47EAPCh. 36 - The Stanford Linear Accelerator (SLAC) accelerates...Ch. 36 - Prob. 49EAPCh. 36 - Prob. 50EAPCh. 36 - Prob. 51EAPCh. 36 - Prob. 52EAPCh. 36 - Prob. 53EAPCh. 36 - Prob. 54EAPCh. 36 - Prob. 55EAPCh. 36 - Prob. 56EAPCh. 36 - Prob. 57EAPCh. 36 - Prob. 58EAPCh. 36 - Prob. 59EAPCh. 36 - Prob. 60EAPCh. 36 - Prob. 61EAPCh. 36 - Prob. 62EAPCh. 36 - Prob. 63EAPCh. 36 - Prob. 64EAPCh. 36 - Prob. 65EAPCh. 36 - Prob. 66EAPCh. 36 - Prob. 67EAPCh. 36 - Prob. 68EAPCh. 36 - Prob. 69EAPCh. 36 - Prob. 70EAPCh. 36 - Prob. 71EAPCh. 36 - Prob. 72EAPCh. 36 - Prob. 73EAPCh. 36 - Prob. 74EAPCh. 36 - Prob. 75EAPCh. 36 - Prob. 76EAPCh. 36 - Prob. 77EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are an engineer assigned to build a spaceship. The length and diameter of your spaceship as measured by an astronaut on board are 80.0 m and 25.0 m, respectively. The spaceship moves at 70% the speed of light relative to you on Earth in a direction parallel to its length. What are its dimensions as measured by you on Earth?arrow_forwardThe speed of light is 2.998*10^8 m/s. How far does light travel in 6.0 μs? Set the math up. But don't do any of it. Just leave your answer as a math expression. be sure your answer includes all the correct unit symbols.arrow_forwardThe speed of light is exactly e = 299792458 m - s1. (Also written 299, 792, 458 m - s-1 or 2.99792458 × 10°m - s1. This is exact because it is the definition of the metre.) It takes light 8.3 minutes to get from the sun to the earth. Assuming that the earth's orbit is exactly circular (an approximation) and that its speed is constant, and using the data in this question, calculate the speed of the earth in its orbit around the sun in km · hr. Practise writing your conversions clearly using the 'multiply by 1' technique. Speed of the earth =_ km per hour. Write your answer in standard (not scientific) notation, i.e. without using exponents, and without using commas. However, remember to use the correct number of significant figures. (Hint: which is the least precise of the given data?) Do not include units.arrow_forward
- The Global Positioning System (GPS) relies on very accurate atomic clocks aboard a network of 24 satellites, each of which orbits the Earth in 12 hours. To provide a resolution better than 1 meter on Earth, the clocks must not gain or lose more than 3 ns in 12 hours. That is, the clocks must be accurate to 3 x 10-⁹ s/(12 hr) = 7 × 10-14 The satellites move at a speed v = 3.9 km/s in circular orbits. Is it necessary for GPS receivers on Earth to account for special relativistic effects?arrow_forwardImagine you derive the following expression by analyzing the physics of a particular system: v2=v20+2axv2=v02+2ax. The problem requires solving for xx, and the known values for the system are a=2.55meter/second2a=2.55meter/second2, v0=21.8meter/secondv0=21.8meter/second, and v=0meter/secondv=0meter/second. Perform the next step in the analysis.arrow_forwardA cosmic ray travels 60 km through the earth’s atmosphere in 400 μs, as measured by experimenters on the ground. How long does the journey take according to the cosmic ray?arrow_forward
- How many meters are there in 3.2 light year (s), if the speed of light is 3 x 108 m/s. This number may be very large so do not round or truncate your number. Answer:arrow_forwardA tourist is walking at a speed of 1.05 m/s along a 6.03-km path that follows an old canal. If the speed of light in a vacuum were 3.0 m/s, how long would the path be, according to the tourist in km?arrow_forwardEarth's neighboring galaxy, the Andromeda Galaxy, is a distance of 2.54×107 light-years from Earth. If the lifetime of a human is taken to be 70.0 years, a spaceship would need to achieve some minimum speed ?min to deliver a living human being to this galaxy. How close to the speed of light would this minimum speed be? Express your answer as the difference between ?min and the speed of light ?. ?−?min= m/sarrow_forward
- A cosmic ray travels 60.0 km through the earth's atmosphere in 400 μs, as measured by experimenters on the ground. How long does the journey take according to the cosmic ray? Express your answer with the appropriate units. ▸ View Available Hint(s) Atau = Value 4 Units ?arrow_forwardWhat is the speed of light (c=3.0∗10^8 m/s )in miles per minute?arrow_forwardhelp on this please!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY