Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 36, Problem 40AP
To determine
The reason for which the given situation is impossible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ray of light consisting of blue light (wavelength 480 nm) and red light
(wavelength 670 nm) is incident on a thick piece of glass at 80°. What is
the angular separation between the refracted red and refracted blue
beams while they are in the glass? (The respective indices of refraction
for the blue light and the red light are 1.4636 and 1.4561.)
O 0.27°
0.33°
O 0.36°
O 0.46°
O 0.54°
- Why is the following situation impossible? A laser beam strikes
one end of a slab of material of length L = 42.0 cm and
thickness t = 3.10 mm as shown in Figure P34.36 (not to
scale). It enters the material at the center of the left end,
striking it at an angle of incidence of 0 = 50.0°. The index of
refraction of the slab is n = 1.48. The light makes 85 inter-
nal reflections from the top and bottom of the slab before
exiting at the other end.
0
-L-
n
Figure P34.36
A ray of light originates inside the glass filled with water, as shown in the figure. It travels through water, in incident on the glass side, and emerges into the
air. Ignore any partial reflections. What is the values of angles Q?
Water
n=1.33
370
Air
Glass
n = 1.0
n= 1.5
32.25°
67.16°
53.17°
35.89°
Chapter 36 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 36.2 - Which of the following causes the fringes in a...Ch. 36.3 - Using Figure 36.6 as a model, sketch the...Ch. 36.5 - One microscope slide is placed on top of another...Ch. 36 - Two slits are separated by 0.320 mm. A beam of...Ch. 36 - Prob. 2PCh. 36 - A laser beam is incident on two slits with a...Ch. 36 - Prob. 4PCh. 36 - Prob. 5PCh. 36 - Light with wavelength 442 nm passes through a...Ch. 36 - Prob. 7P
Ch. 36 - A student holds a laser that emits light of...Ch. 36 - Coherent light rays of wavelength strike a pair...Ch. 36 - In Figure P36.10 (not to scale), let L = 1.20 m...Ch. 36 - Prob. 11PCh. 36 - Prob. 12PCh. 36 - In the double-slit arrangement of Figure P36.13, d...Ch. 36 - Monochromatic light of wavelength is incident on...Ch. 36 - Prob. 15PCh. 36 - Show that the distribution of intensity in a...Ch. 36 - Prob. 17PCh. 36 - Monochromatic coherent light of amplitude E0 and...Ch. 36 - Prob. 19PCh. 36 - Prob. 20PCh. 36 - Prob. 21PCh. 36 - Prob. 22PCh. 36 - When a liquid is introduced into the air space...Ch. 36 - Prob. 24PCh. 36 - Prob. 25PCh. 36 - Prob. 26PCh. 36 - Prob. 27PCh. 36 - Prob. 28APCh. 36 - Prob. 29APCh. 36 - Prob. 30APCh. 36 - Prob. 31APCh. 36 - Prob. 32APCh. 36 - In a Youngs double-slit experiment using light of...Ch. 36 - Prob. 34APCh. 36 - Figure P36.35 shows a radio-wave transmitter and a...Ch. 36 - Prob. 36APCh. 36 - In a Newtons-rings experiment, a plano-convex...Ch. 36 - Prob. 38APCh. 36 - A plano-concave lens having index of refraction...Ch. 36 - Prob. 40APCh. 36 - Interference fringes are produced using Lloyds...Ch. 36 - A plano-convex lens has index of refraction n. The...Ch. 36 - Prob. 43APCh. 36 - Prob. 44APCh. 36 - Prob. 45APCh. 36 - Prob. 46CPCh. 36 - Prob. 47CPCh. 36 - Prob. 48CPCh. 36 - Prob. 49CPCh. 36 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardHow many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardThe critical angle for total internal reflection at a turpentine-air interface is 42.8°. A ray traveling in the liquid has an angle of incidence of 32.0° at the interface. What angle does the refracted ray in air make with the normal? O51.3° O 14.7° O 53.0° O 23.8° here to search Larrow_forward
- In the figure, a 2.3-m-long vertical pole extends from the bottom of a swimming pool to a point 50.0 cm above the water. Sunlight is incident at angle θ = 45.0°. What is the length in meters of the shadow of the pole on the level bottom of the pool? The water has an index of refraction of 1.33.arrow_forwardTwo light beams are incident normal to one surface of a triangular prism with refractive index n = 1.4 surrounded by air. What is the value of the angle between the two emerging beams, shown as a in the figure? d a 90° d 45° O 70.4° 73.7° O 61.8° 60.0° O 65.8° ..... ......arrow_forwardAn optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air is 1. ←cladding -corearrow_forward
- The index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660. A beam of white light in this glass strikes the glass-air interface at a 28.30° angle of incidence and refracts out into the air. What is the angular separation A between the red and violet components of the spectrum that emerges from the glass? A0=arrow_forwardHow does one go about this question?arrow_forwardA fiber optic is made by cladding a thin fiber core of refractive index n₁ = 1.45 with a material of refractive index n₂ = 1.38. What is the maximum incident angle, 0, so that the light ray is totally internally reflected inside the fiber?arrow_forward
- Part (b) Numerically, what is the angle in degrees? θ2= Part (c) Write an expression for the reflection angle ψ, with respect to the surface. ψ = Part (d) Numerically, what is this angle in degrees? ψ =arrow_forwardLight of wavelength 471 nm is incident on the face of a silica prism at an angle of θ1 = 75◦ (with respect to the normal to the surface). The apex angle of the prism is φ = 57.5◦. Given: The value of the index of refraction for silica is n = 1.455. Find the angle of refraction at this first surface. Answer in units of degrees. Find the angle of incidence at the second surface. Answer in units of degrees. Find the angle of refraction at the second surface. Answer in units of degrees. Find the angle between the incident and emerging rays. Answer in units of degrees.arrow_forwardYou are underwater, on the seafloor, looking up. Use n=1.33 for the index of refraction of water. At what range of angles, as measured above the seafloor, can you NOT see out of the water? (You will need a carefully labeled diagram showing just where the light is coming from, and a reasoned explanation of why your answer is correct.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY