
Concept explainers
CALC It is possible to calculate the intensity in the single-slit Fraunhofer diffraction pattern without using the phasor method of Section 36.3. Let y′ represent the position of a point within the slit of width a in Fig. 36.5a, with y′ = 0 at the center of the slit so that the slit extends from y′ = −a/2 to y′ − a/ 2. We imagine dividing the slit up into infinitesimal strips of width d y′ each of which acts as a source of secondary wavelets, (a) The amplitude of the total wave at the point O on the distant screen in Fig. 36.5a is E0. Explain why the amplitude of the wavelet from each infinitesimal strip within the slit is E0(dy′/a), so that the electric field of the wavelet a distance x from the infinitesimal strip is dE = E0(dy′/a) sin (kx – ωt). (b) Explain why the wavelet from each strip as detected at point P in Fig. 36.5a can be expressed as
Where D is the distance from the center of the slit to point P and k =2πλ.. (c) By integrating the contributions dE from all parts of the slit, show that the total wave detected at point P is
(The trigonometric identities in Appendix B will be useful.) Show that at θ = 0°, corresponding to point O in Fig. 36.5a, the wave is E = E0 sin(kD − ωt) and has amplitude E0, as stated in part (a), (d) Use the result of part (c) to show that if the intensity at point O is I0, then the intensity at a point P is given by Eq. (36.7).

Want to see the full answer?
Check out a sample textbook solution
Chapter 36 Solutions
University Physics, Volume 2 - Technology Update Custom Edition for Texas A&M - College Station, 2/e
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Chemistry: Structure and Properties (2nd Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
College Physics: A Strategic Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





