Concept explainers
Intensity Pattern of N Slits. (a) Consider an arrangement of N slits with a distance d between adjacent slits. The slits emit coherently and in phase at wavelength λ. Show that at a time t, the electric Held at a distant point P is
where E0 the amplitude at P of the electric field due to an individual slit, ϕ = (2π/sinθ)/λ, θ is the angle of the rays reaching P (as measured from the perpendicular bisector of the slit arrangement), and R is the distance from P to the most distant slit. In this problem, assume that R is much larger than d. (b) To carry out the sum in part (a), it is convenient to use the complex-number relationship = eiz = cosz + i sin z, where i =
(c) Using the properties of the exponential function that = eAeB = e(A+B) and (eA)nshow = en,A, that the sum in part (b) can be written as
=
Then, using the relationship eiz = cosz + isinz, show that the (real) electric field at point P is
The quantity in the first square brackets in this expression is the amplitude of the electric field at P. (d) Use the result for the electric-field amplitude in part (c) to show that the intensity at an angle θ is
where I0 is the maximum intensity for an individual slit, (e) Cheek the result in part (d) for the case N = 2. It will help to recall that sin2A = 2 sin A cosA. Explain why your result differs from Eq. (35.10), the expression for the intensity in two-source interference, by a factor of 4. (Hint: Is I0, defined in the same way in both expressions?)
Want to see the full answer?
Check out a sample textbook solutionChapter 36 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Biological Science (6th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Anatomy & Physiology (2nd Edition)
College Physics: A Strategic Approach (3rd Edition)
Anatomy & Physiology (6th Edition)
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardIf A - B = 0, then the vectors A and B have equal magnitudes and are directed in the opposite directions from each other. True Falsearrow_forwardIf the eastward component of vector A is equal to the westward component of vector B and their northward components are equal. Which one of the following statements about these two vectors is correct? Vector À is parallel to vector B. Vectors À and point in opposite directions. VectorÀ is perpendicular to vector B. The magnitude of vector A is equal to the magnitude of vectorarrow_forward
- No chatgpt plsarrow_forwardConsider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball. B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…arrow_forwardanswer question 5-9arrow_forward
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill