EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100461260
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 36, Problem 36.34P
Figure P35.20 (page 958) shows a curved surface separating a material with index of refraction n1 from a material with index n2. The surface forms an image I of object O. The ray shown in red passes through the surface along a radial line. Its angles of incidence and refraction are both zero, so its direction does not change at the surface. For the ray shown in blue, the direction changes according to Snell’s law, n1 sin θ1 = n2 sin θ2. For paraxial rays, we assume θ1, and θ2 are small, so we may write n1 tan θ1 = n2 tan θ2. The magnification is defined as M = h′/h. Prove that the magnification is given by M = −n1q/n2p.
Figure P35.20
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
One has to push down a ball with a force of 470 Newtons in order to hold the ball still, completely submerged under the surface of the water. What is the volume of the styrofoam ball in cubic meters? Use 997 kg/m3 as the density of water, 95 kg/m3 for the density of the styrofoam, and g = 9.8 m/s2.
Chapter 36 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 36 - You are standing approximately 2 m away from a...Ch. 36 - You wish to start a fire by reflecting sunlight...Ch. 36 - Consider the image in the mirror in Figure 35.14....Ch. 36 - Prob. 36.4QQCh. 36 - Prob. 36.5QQCh. 36 - What is the focal length of a pane of window...Ch. 36 - A camera can be modeled as a simple converging...Ch. 36 - Two campers wish to start a fire during the day....Ch. 36 - The faceplate of a diving mask can be ground into...Ch. 36 - Lulu looks at her image in a makeup mirror. lt is...
Ch. 36 - An object is located 50.0 cm from a converging...Ch. 36 - Prob. 36.4OQCh. 36 - A converging lens in a vertical plane receives...Ch. 36 - Prob. 36.6OQCh. 36 - Prob. 36.7OQCh. 36 - Prob. 36.8OQCh. 36 - A person spearfishing from a boat sees a...Ch. 36 - Prob. 36.10OQCh. 36 - A converging lens made of crown glass has a focal...Ch. 36 - A converging lens of focal length 8 cm forms a...Ch. 36 - Prob. 36.13OQCh. 36 - An object, represented by a gray arrow, is placed...Ch. 36 - Prob. 36.1CQCh. 36 - Prob. 36.2CQCh. 36 - Why do some emergency vehicles have the symbol...Ch. 36 - Prob. 36.4CQCh. 36 - Prob. 36.5CQCh. 36 - Explain why a fish in a spherical goldfish bowl...Ch. 36 - Prob. 36.7CQCh. 36 - Lenses used in eyeglasses, whether converging or...Ch. 36 - Suppose you want to use a converging lens to...Ch. 36 - Consider a spherical concave mirror with the...Ch. 36 - In Figures CQ36.11a and CQ36.11b, which glasses...Ch. 36 - Prob. 36.12CQCh. 36 - Prob. 36.13CQCh. 36 - Prob. 36.14CQCh. 36 - Prob. 36.15CQCh. 36 - Prob. 36.16CQCh. 36 - Prob. 36.17CQCh. 36 - Determine the minimum height of a vertical flat...Ch. 36 - In a choir practice room, two parallel walls are...Ch. 36 - (a) Does your bathroom mirror show you older or...Ch. 36 - Prob. 36.4PCh. 36 - A periscope (Fig. P35.3) is useful for viewing...Ch. 36 - Two flat mirrors have their reflecting surfaces...Ch. 36 - Two plane mirrors stand facing each other, 3.00 m...Ch. 36 - An object is placed 50.0 cm from a concave...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - An object is placed 20.0 cm from a concave...Ch. 36 - A convex spherical mirror has a radius of...Ch. 36 - Prob. 36.12PCh. 36 - An object of height 2.00 cm is placed 30.0 cm from...Ch. 36 - A dentist uses a spherical mirror to examine a...Ch. 36 - A large hall in a museum has a niche in one wall....Ch. 36 - Why is the following situation impossible? At a...Ch. 36 - Prob. 36.17PCh. 36 - A certain Christmas tree ornament is a silver...Ch. 36 - (a) A concave spherical mirror forms an inverted...Ch. 36 - (a) A concave spherical mirror forms ail inverted...Ch. 36 - An object 10.0 cm tall is placed at the zero mark...Ch. 36 - A concave spherical mirror has a radius of...Ch. 36 - A dedicated sports car enthusiast polishes the...Ch. 36 - A convex spherical mirror has a focal length of...Ch. 36 - A spherical mirror is to be used to form an image...Ch. 36 - Review. A ball is dropped at t = 0 from rest 3.00...Ch. 36 - You unconsciously estimate the distance to an...Ch. 36 - Prob. 36.28PCh. 36 - One end of a long glass rod (n = 1.50) is formed...Ch. 36 - A cubical block of ice 50.0 cm on a side is placed...Ch. 36 - Prob. 36.31PCh. 36 - Prob. 36.32PCh. 36 - A flint glass, plate rests on the bottom of an...Ch. 36 - Figure P35.20 (page 958) shows a curved surface...Ch. 36 - Prob. 36.35PCh. 36 - Prob. 36.36PCh. 36 - A goldfish is swimming at 2.00 cm/s toward the...Ch. 36 - A thin lens has a focal length of 25.0 cm. Locate...Ch. 36 - An object located 32.0 cm in front of a lens forms...Ch. 36 - An object is located 20.0 cm to the left of a...Ch. 36 - The projection lens in a certain slide projector...Ch. 36 - An objects distance from a converging lens is 5.00...Ch. 36 - A contact lens is made of plastic with an index of...Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A converging lens has a focal length of 10.0 cm....Ch. 36 - A diverging lens has a focal length of magnitude...Ch. 36 - Prob. 36.47PCh. 36 - Suppose an object has thickness dp so that it...Ch. 36 - The left face of a biconvex lens has a radius of...Ch. 36 - In Figure P35.30, a thin converging lens of focal...Ch. 36 - An antelope is at a distance of 20.0 m from a...Ch. 36 - Prob. 36.52PCh. 36 - A 1.00-cm-high object is placed 4.00 cm to the...Ch. 36 - The magnitudes of the radii of curvature are 32.5...Ch. 36 - Two rays traveling parallel to the principal axis...Ch. 36 - Prob. 36.56PCh. 36 - Figure 35.34 diagrams a cross section of a camera....Ch. 36 - Josh cannot see objects clearly beyond 25.0 cm...Ch. 36 - Prob. 36.59PCh. 36 - A person sees clearly wearing eyeglasses that have...Ch. 36 - Prob. 36.61PCh. 36 - A certain childs near point is 10.0 cm; her far...Ch. 36 - A person is to be fitted with bifocals. She can...Ch. 36 - A simple model of the human eye ignores its lens...Ch. 36 - A patient has a near point of 45.0 cm and far...Ch. 36 - A lens that has a focal length of 5.00 cm is used...Ch. 36 - The distance between the eyepiece and the...Ch. 36 - The refracting telescope at the Yerkes Observatory...Ch. 36 - A certain telescope has an objective mirror with...Ch. 36 - Astronomers often take photographs with the...Ch. 36 - Prob. 36.71APCh. 36 - A real object is located at the zero end of a...Ch. 36 - The distance between an object and its upright...Ch. 36 - Prob. 36.74APCh. 36 - Andy decides to use an old pair of eyeglasses to...Ch. 36 - Prob. 36.76APCh. 36 - The lens and mirror in Figure P36.77 are separated...Ch. 36 - Two converging lenses having focal lengths of f1 =...Ch. 36 - Figure P36.79 shows a piece of glass with index of...Ch. 36 - Prob. 36.80APCh. 36 - The object in Figure P36.81 is midway between the...Ch. 36 - In many applications, it is necessary to expand or...Ch. 36 - Prob. 36.83APCh. 36 - Prob. 36.84APCh. 36 - Two lenses made of kinds of glass having different...Ch. 36 - Why is the following situation impossible?...Ch. 36 - An object is placed 12.0 cm to the left of a...Ch. 36 - An object is placed a distance p to the left of a...Ch. 36 - An observer to the right of the mirror-lens...Ch. 36 - In a darkened room, a burning candle is placed...Ch. 36 - Prob. 36.91APCh. 36 - An object 2.00 cm high is placed 40.0 cm to the...Ch. 36 - Assume the intensity of sunlight is 1.00 kW/m2 at...Ch. 36 - A zoom lens system is a combination of lenses that...Ch. 36 - Figure P36.95 shows a thin converging lens for...Ch. 36 - A floating strawberry illusion is achieved with...Ch. 36 - Consider the lensmirror arrangement shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The cube is placed in a bucket of water and find that it floats, with 33% of its volume submerged below the surface of the water. What is the density of the mystery material? The material is uniformly distributed throughout the solid cube, with the number of kg/m3.arrow_forward2.82 A ball is thrown straight up from the ground with speed Up. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of un, and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.arrow_forwardThe small piston has an area A1=0.033 m2 and the large piston has an area A2= 4.0 m2. What force F2 will the large piston provide if the small piston is pushed down with a force of 15 Newtons with an answer in Newtons?arrow_forward
- 2.23 BIO Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the ac- celeration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an air- bag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forwardPlease solve and answer these problems correctly.Thank you!!arrow_forward2.2. In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x-axis to the release point, what was the bird's average ve- locity in m/s (a) for the return flight and (b) for the whole episode, from leaving the nest to returning?arrow_forward
- Use relevant diagrams where necessary and go through it in detailsarrow_forwardYour blood pressure (usually given in units of "mm of Hg") is a result of the heart muscle pushing on your blood. The left side of the heart creates a pressure of 115 mm Hg by exerting a force directly on the blood over an effective area of 14.5 cm2. What force does it exert to accomplish this? (Give your answer as the number of Newtons and note that you will need to do some unit conversions.)arrow_forwardWhat is the absolute (total) pressure experienced by a diver at a depth of 17 meters below the surface of a lake? Assume that atmospheric pressure at the surface of the lake is 101,000 Pascals, g= 9.8 m/s2, and the density of the water in the lake is 997 kg/m3. Give your answer as the number of Pascals.arrow_forward
- A particular solid cube has an edge of length 0.59 meters and is made of a material whose density is 3500 kg/m3. What is the mass of the cube? Give your answer as the number of kilograms.arrow_forwardSolve and answer correctly please.Thank you!!arrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY