Concept explainers
Use the heat equation to calculate the energy, in joules and calories, for each of the following (see TABLE3.11):
a. to heat 25.0 g of water from 12.5 °C to 25.7 °C
b. to heat 38.0 g of copper from 122 °C to 246 °C
c. lost when 15.0 g of ethanol, C2H6O, cools from 60.5 °C to −42.0 °C
d. lost when 125 g of iron cools from 118 °C to 55 °C
TABLE 3.11 Specific Heats for Some Substance
Substance |
|
|
Elements | ||
Aluminum, Al(s) | 0.214 | 0.897 |
Copper, Cu(s) | 0.0920 | 0.385 |
Gold, Au(s) | 0.0308 | 0.129 |
Iron, Fe(s) | 0.108 | 0.452 |
Silver, Ag(s) | 0.0562 | 0.235 |
Titanium, Ti(s) | 0.125 | 0.523 |
Compounds | ||
Ammonia, NH3(g) | 0.488 | 2.04 |
Ethanol, C2H6O(?) | 0.588 | 2.46 |
Sodium chloride, NaCl(s) | 0.207 | 0.864 |
Water, H2O(?) | 1.00 | 4.184 |
Water, H2O(s) | 0.485 | 2.03 |
Trending nowThis is a popular solution!
Chapter 3 Solutions
Study Guide And Selected Solutions Manual For Chemistry Format: Paperback
- When calcium carbonate, CaCO3 (the major constituent of limestone and seashells), is heated, it decomposes to calcium oxide (quicklime). CaCO3(s)CaO(s)+CO2(g);H=177.9kJ How much heat is required to decompose 21.3 g of calcium carbonate?arrow_forwardSulfur dioxide gas reacts with oxygen, O2(g), to produce SO3(g). This reaction releases 99.0 kJ of heat (at constant pressure) for each mole of sulfur dioxide that reacts. Write the thermochemical equation for the reaction of 2 mol of sulfur dioxide, and then also for the decomposition of 3 mol of sulfur trioxide gas into oxygen gas and sulfur dioxide gas. Do you need any other information to answer either question?arrow_forwardYou wish to heat water to make coffee. How much heat (in joules) must be used to raise the temperature of 0.180 kg of tap water (enough for one cup of coffee) from 30C to 96C (near the ideal brewing temperature)? Assume the specific heat is that of pure water, 4.18 J/(gC).arrow_forward
- Hydrogen is an ideal fuel in many respects; for example, the product of its combustion, water, is nonpolluting. The heat given off in burning hydrogen to gaseous water is 5.16 104 Btu per pound. What is this heat energy in joules per gram? (1 Btu = 252 cal; see also Table 1.4.)arrow_forwardThe overall reaction in a commercial heat pack can be represented as 4Fe(s)+3O2(g)2Fe2O3(s)H=1652KJ a. How much heat is released when 4.00 moles of iron are reacted with excess O2? b. How much heat is released when 1.00 mole of Fe2O3 is produced? c. How much heat is released when 1.00 g iron is reacted with excess O2? d. How much heat is released when 10.0 g Fe and 2.00 g O2 are reacted?arrow_forwardHypothetical elements A2 and B2 react according to the following equation, forming the compound AB. A2(aq)+B2(aq)2AB(aq);H=+271kJ/mol If solutions A2(aq) and B2(aq), starting at the same temperature, are mixed in a coffee-cup calorimeter, the reaction that occurs is a exothermic, and the temperature of the resulting solution rises. b endothermic, and the temperature of the resulting solution rises. c endothermic, and the temperature of the resulting solution falls. d exothermic, and the temperature of the resulting solution falls. e exothermic or endothermic, depending on the original and final temperatures.arrow_forward
- Calcium oxide (quicklime) reacts with water to produce calcium hydroxide (slaked lime). CaO(s)+H2O(l)Ca(OH)2(s);H=65.2kJ The heat released by this reaction is sufficient to ignite paper. How much heat is released when 28.6 g of calcium oxide reacts?arrow_forwardThe Group 2A carbonates decompose when heated. For example, BaCO3(s)BaO(s)+CO2(g) Use enthalpies of formation (see Appendix C) and calculate the heat required to decompose 6.50 g of barium carbonate.arrow_forwardA soluble salt, MX2, is added to water in a beaker. The equation for the dissolving of the salt is: MX2(s)M2+(aq)+2X(aq);H0 a Immediately after the salt dissolves, is the solution warmer or colder? b Indicate the direction of heat flow, in or out of the beaker, while the salt dissolves. c After the salt dissolves and the water returns to room temperature, what is the value of q for the system?arrow_forward
- 9.82 The specific heat of gold is 0.13 J g-1 K-1 and that of copper is 0.39 J g-1 K-1. Suppose that we heat both a 25-g sample of gold and a 25-g sample of copper to 80C and then drop them into identical beakers containing 100 mL of cold water at 10°C. When each beaker reaches thermal equilibrium, which of the following will be true, and why? (You should not need to calculate the actual temperatures here.) (a) Both beakers will be at the same temperature. (b) The beaker with the copper sample in it will be at a higher temperature. (c) The beaker with the gold sample in it will be at a higher temperaturearrow_forwardHydrogen sulfide, H2S, is produced during decomposition of organic matter. When 0.5000 mol H2S burns to produce SO2(g) and H2O(l), 281.0 kJ of heat is released. What is this heat in kilocalories?arrow_forwardHow much heat is absorbed by a 44.7-g piece of leadwhen its temperature increases by 65.4°C?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning