bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 36, Problem 22P

(a)

To determine

The wavelength and the color of the light in the visible spectrum most strongly reflected.

(a)

Expert Solution
Check Mark

Answer to Problem 22P

The value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum most strongly reflected is green.

Explanation of Solution

Given Information: The refractive index of the oil film is 1.45 , thickness of the film is 280nm .

It is given that an oil film floating on water is illuminated by white light at normal incidence as shown in figure given below.

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term, Chapter 36, Problem 22P

Figure (1)

For most strongly reflected waves:

Write the expression for the constructive interference in thin film.

2μoilt=(m+12)λ (1)

Here,

μoil is the refractive index of the oil film.

λ is the value of wavelength of the light.

t is the thickness of the film.

m is the order number.

From equation (1), formula to calculate the value of wavelength of the light is,

λ=2μoilt(m+12) (2)

From equation (2), formula to calculate the value of wavelength of the light for m=0 is,

λ0=2μoilt(m+12) (3)

Here,

λ0 is the value of wavelength of the light for m=0 .

Substitute 0 for m , 1.45 for μoil , 280nm for t in equation (3) to find λ0 ,

λ0=2×1.45×280nm(0+12)=1624nm

The range for the wavelength of the visible light is 390nm to 700nm .

Thus, the value of wavelength of the light for m=0 is 1624nm and the colour of the light in the invisible spectrum is infared.

From equation (2), formula to calculate the value of wavelength of the light for m=1 is,

λ1=2μoilt(m+12) (4)

Here,

λ1 is the value of wavelength of the light for m=1 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (4) to find λ1 ,

λ1=2×1.45×280nm(1+12)=541.33nm

Thus, the value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum is green.

From equation (2), formula to calculate the value of wavelength of the light for m=2 is,

λ2=2μoilt(m+12) (4)

Here,

λ2 is the value of wavelength of the light for m=2 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (4) to find λ2 ,

λ2=2×1.45×280nm(2+12)=324.8nm325nm

Thus, the value of wavelength of the light for m=2 is 325nm and the colour of the light in the invisible spectrum is ultraviolet.

Conclusion:

Therefore, the value of wavelength of the light for m=1 is 541.33nm and the colour of the light in the visible spectrum most strongly reflected is green.

(b)

To determine

The wavelength and the color of the light in the spectrum most strongly transmitted.

(b)

Expert Solution
Check Mark

Answer to Problem 22P

The value of wavelength of the light for m=1 is 271nm and the colour of the light in the visible spectrum most strongly transmitted is violet.

Explanation of Solution

Given Information: The refractive index of the oil film is 1.45 , thickness of the film is 280nm .

For most strongly transmitted waves:

Write the expression for the destructive interference in thin film.

2μoilt=mλ (5)

From equation (5), formula to calculate the value of wavelength of the light is,

λ=2μoiltm (6)

From equation (6), formula to calculate the value of wavelength of the light for m=1 is,

λ0=2μoiltm (7)

Here,

λ0 is the value of wavelength of the light for m=1 .

Substitute 1 for m , 1.45 for μoil , 280nm for t in equation (7) to find λ0 ,

λ0=2×1.45×280nm1=812nm

Thus, the value of wavelength of the light for m=1 is 812nm and the colour of the light in the invisible spectrum is infared.

From equation (6), formula to calculate the value of wavelength of the light for m=2 is,

λ1=2μoiltm (8)

Here,

λ1 is the value of wavelength of the light for m=2 .

Substitute 2 for m , 1.45 for μoil , 280nm for t in equation (8) to find λ1 ,

λ1=2×1.45×280nm2=406nm

Thus, the value of wavelength of the light for m=2 is 406nm and the colour of the light in the visible spectrum is violet.

From equation (6), formula to calculate the value of wavelength of the light for m=3 is,

λ2=2μoiltm (9)

Here,

λ2 is the value of wavelength of the light for m=3 .

Substitute 3 for m , 1.45 for μoil , 280nm for t in equation (9) to find λ2 ,

λ2=2×1.45×280nm3=270.666nm271nm

Thus, the value of wavelength of the light for m=3 is 271nm and the colour of the light in the invisible spectrum is ultraviolet.

Conclusion:

Therefore, the value of wavelength of the light for m=1 is 271nm and the colour of the light in the visible spectrum most strongly transmitted is violet.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three slits, each separated from its neighbor by d = 0.06 mm, are illuminated by a coherent light source of wavelength 550 nm. The slits are extremely narrow. A screen is located L = 2.5 m from the slits. The intensity on the centerline is 0.05 W. Consider a location on the screen x = 1.72 cm from the centerline. a) Draw the phasors, according to the phasor model for the addition of harmonic waves, appropriate for this location. b) From the phasor diagram, calculate the intensity of light at this location.
A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the following, • Length of each tube is L = 0.4 m. • λ= 598 nm. Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198 times. (a) What is the index of refraction for air? (b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be determined by this experiment?
1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qi

Chapter 36 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY