PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 9EAP
A camera takes a properly exposed photo at f/5.6 and 1/125 s. What shutter speed should be used if the lens is changed to f/4.0?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A camera takes a properly exposed photo at f/5.6 and 1/500 s.
What shutter speed should be used if the lens is changed to f/4.0?
A double-convex lens has a focal length of 6.00cm. (a) How far away from an insect 2.00mm long should the lens be held in order to produce an upright image 5.00mm long? (b) What is the image distance?
A. p = +3.6 cm and q = -9 cm
B. p = +3.6 cm and q = +9 cm
C. p = -3.6 cm and q = -9 cm
D. p = -3.6 cm and q = +9 cm
A leaf is magnified by 5.0 when the leaf is placed 2.8 cm from the lens. Select ALL
the correct statements concerning the lens and the image it forms.
di = -14 cm
di = +14 cm
O di = -1.8 cm
O di = +1.8 cm
Of = -5.0 cm
6:
Of = + 5.0 cm
f = -3.5 cm
Chapter 35 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 35 - Prob. 1CQCh. 35 - Prob. 2CQCh. 35 - Prob. 3CQCh. 35 - Prob. 4CQCh. 35 - Prob. 5CQCh. 35 - Prob. 6CQCh. 35 - Prob. 7CQCh. 35 - To focus parallel light rays to the smallest...Ch. 35 - Prob. 9CQCh. 35 - Two converging lenses with focal lengths of 40 cm...
Ch. 35 - Prob. 2EAPCh. 35 - Prob. 3EAPCh. 35 - Prob. 4EAPCh. 35 - Prob. 5EAPCh. 35 - A 2.0-rn-tall man is 10 m in front of a camera...Ch. 35 - What is the f-number of a lens with a 35 mm focal...Ch. 35 - What is the aperture diameter of a...Ch. 35 - A camera takes a properly exposed photo at f/5.6...Ch. 35 - A camera takes a properly exposed photo with a...Ch. 35 - Ramon has contact lenses with the prescription...Ch. 35 - Ellen wears eyeglasses with the prescription -1.0...Ch. 35 - 13. What is the f-number of a relaxed eye with the...Ch. 35 - Prob. 14EAPCh. 35 - Prob. 15EAPCh. 35 - Prob. 16EAPCh. 35 - Prob. 17EAPCh. 35 - A 20 telescope has a 12-cm-diameter objective...Ch. 35 - Prob. 19EAPCh. 35 - Prob. 20EAPCh. 35 - Prob. 21EAPCh. 35 - Prob. 22EAPCh. 35 - Prob. 23EAPCh. 35 - A scientist needs to focus a helium-neon laser...Ch. 35 - Prob. 25EAPCh. 35 - Prob. 26EAPCh. 35 - Prob. 27EAPCh. 35 - Prob. 28EAPCh. 35 - Prob. 29EAPCh. 35 - Prob. 30EAPCh. 35 - Prob. 31EAPCh. 35 - Prob. 32EAPCh. 35 - Prob. 33EAPCh. 35 - Prob. 34EAPCh. 35 - Prob. 35EAPCh. 35 - Prob. 36EAPCh. 35 - 37. You’ve been asked Lo build a telescope from a...Ch. 35 - Prob. 38EAPCh. 35 - Prob. 39EAPCh. 35 - Prob. 40EAPCh. 35 - Prob. 41EAPCh. 35 - Prob. 42EAPCh. 35 - Prob. 43EAPCh. 35 - Prob. 44EAPCh. 35 - Prob. 45EAPCh. 35 - Prob. 46EAPCh. 35 - Alpha Centauri, the nearest star to our solar...Ch. 35 - Prob. 48EAPCh. 35 - Prob. 49EAPCh. 35 - Prob. 50EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forwardThe near point of an eye is 75.0 cm. (a) What should be the power of a corrective lens prescribed to enable the eye to see an object clearly at 25.0 cm? (b) If, using the corrective lens, the person can see an object clearly at 26 0 cm but not at 25.0 cm, by how many diopters did the lens grinder miss the prescription?arrow_forwardThe left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face has a radius of curvature of magnitude 18.0 cm. The index of refraction of the glass is 1.44. (a) Calculate the focal length of the lens for light incident from the left. (b) What If? After the lens is turned around to interchange the radii of curvature of the two faces, calculate the focal length of the lens for light incident from the left.arrow_forward
- A diverging lens has a focal length of magnitude 20.0 cm. (a) Locate the image for object distances of (i) 40.0 cm, (ii) 20.0 cm, and (iii) 10.0 cm. For each case, state whether the image is (b) real or virtual and (c) upright or inverted.(d) For each case, find the magnification.arrow_forwardAn amoeba is 0.305 cm away from the 0.300 cm- focal length objective lens of a microscope. (a) Where is the image formed by the objective lens? (b) What is this image’s magnification? (C) An eyepiece with a 2.00-cm focal length is placed 20.0 cm from the objective. Where is the final image? (d) What angular magnification is produced by the eyepiece? (e) What is the overall magnification? (See Figure 2.39.)arrow_forwardA converging lens has a focal length of 10.0 cm. Locate the object if a real image is located at a distance from the lens of (a) 20.0 cm and (b) 50.0 cm. What If? Redo the calculations if the images are virtual and located at a distance from the lens of (c) 20.0 cm and (d) 50.0 cm.arrow_forward
- Two converging lenses having focal length of f1 = 10.0 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position x = 31.0 cm indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image uptight or inserted? Figure P23.44arrow_forwardA particular nearsighted patient cant see objects clearly beyond 15.0 cm from their eye. Determine (a) the lens power required to correct the patients vision and (b) the type of lens required (converging or diverging). Neglect the distance between the eye and the corrective lens.arrow_forwardYou have three lenses stuck together. What is the focal length of the combination? f1=27 cm, f2= 16 cm, f3- 30.0 cm.arrow_forward
- How far from a 25.0 -mm -focal-length lens must an object be placed if its image is to be magnified 2.50 x and be real? ? d, = mm What if the image is to be virtual and magnified 2.50x? ? d, = mmarrow_forwardA camera is equipped with a lens with a focal length of 25 cm. When an object 1.3 m (130 cm) away is being photographed, how far from the film should the lens be placed? cmarrow_forwardA contact lens is made of plastic with an index of refraction of 1.60. The lens has an outer radius of curvature of +1.91 cm and an inner radius of curvature of +2.49 cm. What is the focal length of the lens? cm Need Help? Watch It Read Itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY