Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 35, Problem 8P
To determine
The proof of equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the scattering of a particle by a regular lattice of basis a, b,
c. The interaction with the lattice can be written as V = E, V(Ir – r,|).
where V (r-r,|) is the potential of each atom and is spherically symmetric
about the atom's lattice point. Show using the Born approximation that
the condition for non-vanishing scattering is that the Bragg law be satisfied.
Start by defining
1(1) = N1 sin(7r/a)
(1)
b2(x) = N2 sin(2ñr/a)
(2)
for the infinite square well. Fix N1 and N2 so that
%3D
2)
You should find that p(r) is periodic in time. That is p(x, t + T) = p(x,t). Find
that T, and draw p(x) for at t = 0, t = T/4, t = T/2, and T = 3T/4.
The radial
function of a particle in
a central potential is give by
wave
[ -
r
R(r) = A-exp
where A is the normalization constant and a is positive constant
еxp
а
2a
of suitable dimensions. If ya is the most probable distance of the particle from the force
center, the value of y is
Chapter 35 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 35 - Prob. 1PCh. 35 - Prob. 2PCh. 35 - Prob. 3PCh. 35 - Prob. 4PCh. 35 - Prob. 5PCh. 35 - Prob. 6PCh. 35 - Prob. 7PCh. 35 - Prob. 8PCh. 35 - Prob. 9PCh. 35 - Prob. 10P
Ch. 35 - Prob. 11PCh. 35 - Prob. 12PCh. 35 - Prob. 13PCh. 35 - Prob. 14PCh. 35 - Prob. 15PCh. 35 - Prob. 16PCh. 35 - Prob. 17PCh. 35 - Prob. 18PCh. 35 - Prob. 19PCh. 35 - Prob. 20PCh. 35 - Prob. 21PCh. 35 - Prob. 22PCh. 35 - Prob. 23PCh. 35 - Prob. 24PCh. 35 - Prob. 25PCh. 35 - Prob. 26PCh. 35 - Prob. 27PCh. 35 - Prob. 28PCh. 35 - Prob. 29PCh. 35 - Prob. 30PCh. 35 - Prob. 31PCh. 35 - Prob. 32PCh. 35 - Prob. 33PCh. 35 - Prob. 34PCh. 35 - Prob. 35PCh. 35 - Prob. 36PCh. 35 - Prob. 37PCh. 35 - Prob. 38P
Knowledge Booster
Similar questions
- Legrende polynomials The amplitude of a stray wave is defined by: SO) =x (21+ 1) exp li8,] sen 8, P(cos 8). INO Here e is the scattering angle, / is the angular momentum and 6, is the phase shift produced by the central potential that performs the scattering. The total cross section is: Show that: 'É4+ 1)sen² 8, .arrow_forwardLet's consider a harmonic oscillator. The total energy of this oscillator is given by E=(p²/2m) +(½)kx?. A) For constant energy E, graph the energies in the range E to E + dE, the allowed region in the classical phase space (p-x plane) of the oscillator. B) For k = 6.0 N / m, m = 3.0 kg and the maximum amplitude of the oscillator xmax =2.3 m For the region with energies equal to or less than E, the oscillator number of states that can be entered D(E).arrow_forwardConsider the three-dimensional harmonic oscillator, for which the potential is V ( r ) = 1/2 m ω2 r2 (a) Show that the separation of variables in Cartesian coordinates turns this into three one-dimensional oscillators, and exploit your knowledge of the latter to determine the allowed energies. Answer: En = ( n + 3/2 ) ħ ω (b) Determine the degeneracy d ( n ) of Enarrow_forward
- Consider the "step" potential: V(x) = (a) Calculate the reflection coefficient, for the case E 0. (b) Calculate the reflection coefficient for the case E > Vo. (c) For a potential such as this, which does not go back to zero to the right of the barrier, the transmission coefficient is not simply |F12/A2 (with A the -Vo AV(x) Scattering from a "cliff" incident amplitude and F the transmitted amplitude), because the transmitted wave travels at a different speed. Show that T = E-Vo F1² E |A|² X for E> Vo. Hint: You can figure it out using Equation gantly, but less informatively-from the probability current ( What is T, for E Vo, calculate the transmission coefficient for the step potential, and check that T + R = 1.arrow_forwardThe harmonic oscillator eigenfunction ₁(x) = = 4a³\1/4 e-ax²/2, where a = μω ħ (a) Find (x²) for an oscillator in this state, and express your result in terms of u, w, and ħ. 1 (b) In an eigenstate it is always true that (T) = (V) for a harmonic oscillator. If ↑ =-=-=-=A² 2μ 1 and ✩ = µw²x², find (p²) when the system is in the state 1₁ (x). (Note: You can use the result found in part (a), or compute it directly from the form of the operator p.) 2arrow_forwardAt the microscopic level, it is possible to understand the spontaneous emission of an alpha particle as having that particle trapped into a potential well, and having it exiting through a tunnel effect. For the following, we will assume we have a potential which is in the following form: ⚫ The potential is symmetrical on the x-axis ⚫ The potential has also a cylindrical symmetry, i.e. in a polar base it does not depend on the polar angle ⚫ For any x =L, the value of the potential is supposed to be Ve**, with A being a positive value. 1) Solve the wave function of the system 2) Assuming you have a probability P to observe the alpha decay, can you write down the equation to compute the values of the coefficients A of the wave functions?arrow_forward
- where and kyk₂ I 2 k 2m E 2 ħ² 2m ħ² (V-E) 3 Show that the solutions for region II can also be written as 2/₁₂ (²) = Ccas (₁₂²) + D sin (k₂²) for Z≤ 1W/ 4 Since the potential well Vez) is symmetrical, the possible eigen functions In You will be symmetrical, so Yn will be either even or odd. a) write down the even solution for region. II b) write down the odd solution region for on II In problem 2, explain why A=G=0₁arrow_forwardApply the boundary conditions to the finite square well potential at x = L to find the following. (a) the relationships among the coefficients B, C, and D due to boundary conditions (Use the following as necessary: a, k, L, C and D.) Y is continuous B = is continuous dx B = (b) the ratio C/D (Use the following as necessary: a, k, and L.)arrow_forwarda simple harmonic oscillator of mass m and angular frequency w is perturbed by additional potential bx3 ,evaluate the second order correction t the ground state energy of the oscillator.arrow_forward
- Write a cogent description of the Bell inequality. Discuss variations and the current status of its experimental verifi cation.arrow_forwardSolve the following.arrow_forwardConsider an infinite well, width L from x=-L/2 to x=+L/2. Now consider a trial wave-function for this potential, V(x) = 0 inside the well and infinite outside, that is of the form (z) = Az. Normalize this wave-function. Find , .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning