Concept explainers
The uncertainty product
Answer to Problem 11P
The uncertainty product
Explanation of Solution
Formula used:
The expression for ground state of harmonic motion is given by,
The wave function for ground state is,
Calculation:
The expression for ground state of harmonic motion is calculated as,
Let,
Then,
For the limits,
The expectation value for
For the limits,
By definition of Gamma function,
Then,
The uncertainty in position is calculated as,
Further simplify the above,
The uncertainty in momentum is calculated as,
Further simplify the above,
Multiply equation (1) and (2).
Conclusion:
Therefore, the product
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers, Vol. 1
- A quantum mechanical particle is confined to a one-dimensional infinite potential well described by the function V(x) = 0 in the region 0 < x < L, V(x) = ∞ elsewhere. The normalised eigenfunctions for a particle moving in this potential are: Yn(x) = √ 2 Nπ sin -X L L where n = 1, 2, 3, .. a) Write down the expression for the corresponding probability density function. Sketch the shape of this function for a particle in the ground state (n = 1). b) Annotate your sketch to show the probability density function for a classical particle moving at constant speed in the well. Give a short justification for the shape of your sketch. c) Briefly describe, with the aid of a sketch or otherwise, the way in which the quantum and the classical probability density functions are consistent with the correspondence principle for large values of n.arrow_forwardFind the expectation value of the kinetic energy for the particle in the state, (x,t)=Aei(kxt). What conclusion can you draw from your solution?arrow_forwardA ID harmonic oscillator of angular frequency w and charge q is in its ground state at time t=0. A perturbation H'(t) = qE eA3 (where E is ekctric field and ß is a constant) is %3D applied for a time t = t. Cakulate the probability of transition to the first and second excited state. (hint: you may expand exponential in perturbation and keep it only up to linear term)arrow_forward
- Problem 3 For = [-1,2] and X(@) = w? - 1, find expressions for Fx(x) and fx(x) assuming that probability measure on 2 is the Lebesgue measure scaled by 1/3.arrow_forwardUsing the nomalization constant A( nd the value of a evaluste the probability to find an escillator in the ground state 2h beyond the classical tuming points This problem cannot be solved in dlosed, analytic form. Develop an approximate, numerical method using a graph calculator, or computer. Assume an electron bound to an atomic-sized region (-0.1 m) with an effective force constant of 1.0 eVm. (To be marked comect, you must be within 25% of the corect answer)arrow_forwardFind the energy values of the first three levels of this well using the finite difference method. Plot the corresponding wave functions. Effective masses are different in wells and barriers. The V0 potential was calculated according to the ? concentration.arrow_forward
- One-dimensional harmonic oscillators in equilibrium with a heat bath (a) Calculate the specific heat of the one-dimensional harmonic oscillator as a function of temperature. (b) Plot the T -dependence of the mean energy per particle E/N and the specific heat c. Show that E/N → kT at high temperatures for which kT > hw. This result corresponds to the classical limit and is shown to be an example of the equipartition theorem. In this limit the energy kT is large in comparison to ħw, the separation between energy levels. Hint: expand the exponential function 1 ē = ħw + eBhw (c) Show that at low temperatures for which ħw> kT , E/N = hw(+e-Bhw) What is the value of the heat capacity? Why is the latter so much smaller than it is in the high temperature limit? Why is this behavior different from that of a two-state system? (d) Verify that S →0 as T> O in agreement with the third law of thermodynamics, and that at high T,S> kN In(kT / hw).arrow_forwardAn electron is trapped in a finite well. How “far” (in eV) is it from being free (that is, no longer trapped inside the well) if the penetration length of its wave function into the classically forbidden region is 1nm? Show derivation on how to find the correct equation to use, from doing this the answer should be 0.038eV.arrow_forwardCalculate ,,,, 0x,and Op, for the nth stationary state of the infinite square well. Check that the uncertainty principle is satisfied. Which state comes closest to the uncertainty limit?arrow_forward
- A particle of mass m is coustrained to move between two concentric impermeable spheres of radii r = a and r = b. There is no other potential. Find the ground state cnergy and norinalizexd wave function.arrow_forwardLet's consider the two-qubit state 3 |) = 100)+101) +110). a) Find the expectation values for the values of both qubits separately. b) The product of qubit values is represented by the operator b₁b2 = (ô× 1) (I Øô) = (ô ❀ô), where bn is the observable for the value of qubit n. Find the expectation value for the product. For statistically independent quantities the expectation value of their product is the product of their expectation values. Are the values of the qubits correlated in state |V)? c) Show that the state cannot be expressed as a product state, i.e., it is an entangled state.arrow_forwardShow that the following wave function is normalized. Remember to square it first. Limits of integration go from -infinity to infinity. DO NOT SKIP ANY STEPS IN THE PROCEDUREarrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax