Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 11P
To determine

The uncertainty product ΔxΔpx .

Expert Solution & Answer
Check Mark

Answer to Problem 11P

The uncertainty product ΔxΔpx is h2 .

Explanation of Solution

Formula used:

The expression for ground state of harmonic motion is given by,

  x=ψ0*(x)xψ0(x)dx

The wave function for ground state is,

  ψ0(x)=A0emω0x22h

Calculation:

The expression for ground state of harmonic motion is calculated as,

  x= ψ 0 *( x)x ψ 0( x)dx= A 0 e m ω 0 x 2 2h x A 0 e m ω 0 x 2 2h dx=( A 0)2 x e ( 2m ω 0 x 2 2h )dx=( A 0)2 x e ( m ω 0 x 2 h )dx

Let,

  mω0x2h=k

Then,

  ( m ω 0 h)(2xdx)=dkxdx=h2mω0dkdx=(h 2m ω 0 ) m ω 0 h 2 dkk= h 2 4m ω 0 dkk

For the limits,

  x,kx,k

  x=( A 0)2 ( kh m ω 0 ) e k h 2 4m ω 0 dkk=( A 0)2( h 2 4m ω 0 ) e kdk=( A 0)2( h 2 4m ω 0 )[ e k 1]=0

The expectation value for x2 for ground state is,

  x2= ψ 0 *( x) x 2 ψ 0( x)dx=20 A 0 e m ω 0 x 2 2h x 2 A 0 e m ω 0 x 2 2h dx=2( A 0)20 x 2 e ( 2m ω 0 x 2 2h )dx=2( A 0)2 x 2 e ( m ω 0 x 2 h )dx

For the limits,

  x0,k0x,k

  x2=2( A 0)20( kh m ω 0 ) e k h 2 4m ω 0 dkk=( m ω 0 hπ)12( h m ω 0 )320 k e kdk=( m ω 0 hπ)12( h m ω 0 )320 k 3 2 1 e kdk

By definition of Gamma function,

  0 e k k 3 2 1dk=Γ(32)=12π

Then,

  x2=( m ω 0 hπ)12( h m ω 0 )32π2=( m ω 0 hπ)12( h m ω 0 )12(h m ω 0 )π2=h2mω0

The uncertainty in position is calculated as,

  Δx= ( xx ) 2=( x 2 2xx+ x 2 )=( x 2 2x0+ 0 2 )= x 2

Further simplify the above,

  Δx=h2mω0   ...... (1)

The uncertainty in momentum is calculated as,

  Δpx= ( p x p x ) 2=( p x 2 2 p x p x + p x 2 )=( p x 2 2 p x 0+ 0 2 )= p x 2

Further simplify the above,

  Δpx=12mhω0   ...... (2)

Multiply equation (1) and (2).

  ΔxΔpx=h 2m ω 0 12mhω0=h2

Conclusion:

Therefore, the product ΔxΔpx is h2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
solve properly
Find the normalization constant B for the combination 18. As noted in Exercise 8, a linear combination of two wave functions for the same sysstem is also a valid wave function also a valid wave function functions for the same system 2TX = B sin TX +sin L. L. of the wave functions for then = 1 and n = 2 states od %3D particle in a box L wide. [A + CO]
Given that, the expectation value of r2 is the inner product (²qb}, find the expectation value of r2
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax