Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray r 3 (the light does not reflect inside material 2) and r 4 (the light reflects twice inside material 2). The waves of r 3 and r 4 interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction n 1 , n 2 , and n 3 , the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated. Figure 35-45 n 1 n 2 n 3 Type L ๐ 61 1.32 1.75 1.39 Min 325 62 1.68 1.59 1.50 Max 2nd 342 63 1.40 1.46 1.75 Max 2nd 482 64 1.40 1.46 1.75 Max 210 65 1.60 1.40 1.80 Min 2nd 632 Table 35-3: Transmission Through Thin Layers.
Fig. 35-43, light is incident perpendicularly on a thin layer of material 2 that lies between (thicker) materials 1 and 3. (The rays are tilted only for clarity.) Part of the light ends up in material 3 as ray
r
3
(the light does not reflect inside material 2) and
r
4
(the light reflects twice inside material 2). The waves of
r
3
and
r
4
interfere, and here we consider the type of interference to be either maximum (max) or minimum (min). For this situation, each problem in Table 35-3 refers to the indexes of refraction
n
1
,
n
2
, and
n
3
, the type of interference, the thin-layer thickness L in nanometers, and the wavelength ๐ in nanometers of the light as measured in air. Where ๐ is missing, give the wavelength that is in the visible range. Where L is missing, give the second least thickness or the third least thickness as indicated.
1. The diagram shows the tube used in the Thomson
experiment.
a. State the KE of the electrons.
b. Draw the path of the electron beam in the gravitational
field of the earth.
C.
If the electric field directed upwards, deduce the direction of the magnetic field so it
would be possible to balance the forces.
electron gun
1KV
as a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?
2. A thin Nichrome wire is used in an experiment to test Ohm's
law using a power supply ranging from 0 to 12 V in steps of 2 V.
Why isn't the graph of I vs V linear?
1.
Nichrome wire does obey Ohm's law. Explain how that can that be true given the
results above
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.