Calculus Early Transcendentals, Binder Ready Version
11th Edition
ISBN: 9781118883822
Author: Howard Anton, Irl C. Bivens, Stephen Davis
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.5, Problem 56ES
The side of a cube is measured to be
(a) Use differentials to estimate the error in the calculated volume.
(b) Estimate the percentage errors in the side and volume.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the weight W of a steel ball bearing varies directly with the cube of the bearing's radius r according to the formula W= 4/3 pi(p)(r)^3, where p is the density of the steel. The surface area of a bearing varies directly as the square of its radius because A = 4 pi(r^2)
a. Express the weight W of a bearing in terms of its surface area
b. Express the bearing's surface area A in terms of its weight.
c. For steel, p = 7.85 g/cm^3. What s the surface area of a bearing weighing 0.62 g?
An inverted circular cone has a radius of 10 cm and a height of 15 cm. When water level in the cone is x cm, the volume of
the water is V cm³. Show that V = "x3. If the water is flowing out of the cone, find the approximate change in V, when x is
27
decreasing from 4 cm to 3.95 cm.
What is the average rate of change of the height of water in the vase with respect to the volume of water in the base as the volume changes from 2.5 cups to 4.25 cups? The average rate of change is?
Chapter 3 Solutions
Calculus Early Transcendentals, Binder Ready Version
Ch. 3.1 - The equation xy+2y=1 defines implicitly the...Ch. 3.1 - Use implicit differentiation to find dy/dx for...Ch. 3.1 - The slope of the tangent line to the graph of...Ch. 3.1 - Use implicit differentiation to find d2y/dx2 for...Ch. 3.1 - (a) Find dy/dx by differentiating implicitly. (b)...Ch. 3.1 - (a) Find dy/dx by differentiating implicitly. (b)...Ch. 3.1 - Find dy/dx by implicit differentiation. x2+y2=100Ch. 3.1 - Find dy/dx by implicit differentiation. x3+y3=3xy2Ch. 3.1 - Find dy/dx by implicit differentiation....Ch. 3.1 - Find dy/dx by implicit differentiation....
Ch. 3.1 - Find dy/dx by implicit differentiation. 1x+1y=1Ch. 3.1 - Find dy/dx by implicit differentiation. x2=x+yxyCh. 3.1 - Find dy/dx by implicit differentiation. sinx2y2=xCh. 3.1 - Find dy/dx by implicit differentiation. cosxy2=yCh. 3.1 - Find dy/dx by implicit differentiation....Ch. 3.1 - Find dy/dx by implicit differentiation....Ch. 3.1 - Find d2y/dx2 by implicit differentiation. 2x23y2=4Ch. 3.1 - Find d2y/dx2 by implicit differentiation. x3+y3=1Ch. 3.1 - Find d2y/dx2 by implicit differentiation. x3y34=0Ch. 3.1 - Find d2y/dx2 by implicit differentiation. xy+y2=2Ch. 3.1 - Find d2y/dx2 by implicit differentiation. y+siny=xCh. 3.1 - Find d2y/dx2 by implicit differentiation. xcosy=yCh. 3.1 - Find the slope of the tangent line to the curve at...Ch. 3.1 - Find the slope of the tangent line to the curve at...Ch. 3.1 - True-False Determine whether the statement is true...Ch. 3.1 - True-False Determine whether the statement is true...Ch. 3.1 - True-False Determine whether the statement is true...Ch. 3.1 - True-False Determine whether the statement is true...Ch. 3.1 - Use implicit differentiation to find the slope of...Ch. 3.1 - Use implicit differentiation to find the slope of...Ch. 3.1 - Use implicit differentiation to find the slope of...Ch. 3.1 - Use implicit differentiation to find the slope of...Ch. 3.1 - Use implicit differentiation to find the specified...Ch. 3.1 - Use implicit differentiation to find the specified...Ch. 3.1 - Use implicit differentiation to find the specified...Ch. 3.1 - Use implicit differentiation to find the specified...Ch. 3.1 - As shown in the accompanying figure, it appears...Ch. 3.1 - (a) A student claims that the ellipse x2xy+y2=1...Ch. 3.1 - (a) Use the implicit plotting capability of a CAS...Ch. 3.1 - Use implicit differentiation to find all points on...Ch. 3.1 - Find the values of a and b for the curve x2y+ay2=b...Ch. 3.1 - At what point(s) is the tangent line to the curve...Ch. 3.1 - Two curves are said to be orthogonal if their...Ch. 3.1 - Two curves are said to be orthogonal if their...Ch. 3.1 - (a) Use the implicit plotting capability of a CAS...Ch. 3.1 - (a) Use the implicit plotting capability of a CAS...Ch. 3.1 - Find dy/dx if 2y3t+t3y=1 and dtdx=1costCh. 3.1 - Find equations for two lines through the origin...Ch. 3.1 - A student asks: “Suppose implicit...Ch. 3.2 - The equation of the tangent line to the graph of...Ch. 3.2 - Find dy/dx . (a) y=ln3x (b) y=lnx (c) y=log1/xCh. 3.2 - Use logarithmic differentiation to find the...Ch. 3.2 - limh0ln1+hh=Ch. 3.2 - Find dy/dx . y=ln5xCh. 3.2 - Find .
Ch. 3.2 - Find dy/dx . y=ln1+xCh. 3.2 - Find dy/dx . y=ln2+xCh. 3.2 - Find dy/dx . y=lnx21Ch. 3.2 - Find dy/dx . y=lnx37x23Ch. 3.2 - Find .
Ch. 3.2 - Find dy/dx . y=ln1+x1xCh. 3.2 - Find .
Ch. 3.2 - Find dy/dx . y=lnx3Ch. 3.2 - Find dy/dx . y=lnxCh. 3.2 - Find .
Ch. 3.2 - Find dy/dx . y=xlnxCh. 3.2 - Find .
Ch. 3.2 - Find dy/dx . y=x2log232xCh. 3.2 - Find dy/dx . y=xlog2x22x3Ch. 3.2 - Find dy/dx . y=x21+logxCh. 3.2 - Find dy/dx . y=logx1+logxCh. 3.2 - Find dy/dx . y=lnlnxCh. 3.2 - Find dy/dx . y=lnlnlnxCh. 3.2 - Find dy/dx . y=lntanxCh. 3.2 - Find dy/dx . y=lncosxCh. 3.2 - Find dy/dx . y=coslnxCh. 3.2 - Find dy/dx . y=sin2lnxCh. 3.2 - Find dy/dx . y=logsin2xCh. 3.2 - Find dy/dx . y=log1sin2xCh. 3.2 - Use the method of Example 3 to help perform the...Ch. 3.2 - Use the method of Example 3 to help perform the...Ch. 3.2 - Use the method of Example 3 to help perform the...Ch. 3.2 - Use the method of Example 3 to help perform the...Ch. 3.2 - Determine whether the statement is true or false....Ch. 3.2 - Determine whether the statement is true or false....Ch. 3.2 - Determine whether the statement is true or false....Ch. 3.2 - Determine whether the statement is true or false....Ch. 3.2 - Find dy/dx using logarithmic differentiation....Ch. 3.2 - Find dy/dx using logarithmic differentiation....Ch. 3.2 - Find dy/dx using logarithmic differentiation....Ch. 3.2 - Find dy/dx using logarithmic differentiation....Ch. 3.2 - Find (a) ddxlogxe (b) ddxlogx2.Ch. 3.2 - Find (a) ddxlog1/xe (b) ddxloglnxe.Ch. 3.2 - Find the equation of the tangent line to the graph...Ch. 3.2 - Find the equation of the tangent line to the graph...Ch. 3.2 - Find the equation of the tangent line to the graph...Ch. 3.2 - Find the equation of the tangent line to the graph...Ch. 3.2 - (a) Find the equation of a line through the origin...Ch. 3.2 - Use logarithmic differentiation to verify the...Ch. 3.2 - Find a formula for the area Aw of the triangle...Ch. 3.2 - Find a formula for the area Aw of the triangle...Ch. 3.2 - Verify that y=lnx+e satisfies dy/dx=ey , with y=1...Ch. 3.2 - Verify that y=lne2x satisfies dy/dx=ey , with y=2...Ch. 3.2 - Find a function 0 such that y=fx satisfies...Ch. 3.2 - Find a function f such that y=fx satisfies...Ch. 3.2 - Find the limit by interpreting the expression as...Ch. 3.2 - Find the limit by interpreting the expression as...Ch. 3.2 - Find the limit by interpreting the expression as...Ch. 3.2 - Modify the derivation of Equation (2) to give...Ch. 3.2 - Let p denote the number of paramecia in a nutrient...Ch. 3.2 - One model for the spread of information over time...Ch. 3.2 - Show that the formula for dy/dx obtained in the...Ch. 3.3 - Suppose that a one-to-one function f has tangent...Ch. 3.3 - In each case, from the given derivative, determine...Ch. 3.3 - Evaluate the derivative.
(a)
(b)
(c)
(d)
Ch. 3.3 - Let fx=ex3+x . Use fx to verify that f is...Ch. 3.3 - Let fx=x5+x3+x . (a) Show that f is one-to-one and...Ch. 3.3 - Let fx=x3+2ex . (a) Show that f is one-to-one and...Ch. 3.3 - Find f1x using Formula (2), and check your answer...Ch. 3.3 - Find f1x using Formula (2), and check your answer...Ch. 3.3 - Determine whether the function f is one-to-one by...Ch. 3.3 - Determine whether the function f is one-to-one by...Ch. 3.3 - Find the derivative of f1 by using Formula (3),...Ch. 3.3 - Find the derivative of f1 by using Formula (3),...Ch. 3.3 - Find the derivative of f1 by using Formula (3),...Ch. 3.3 - Find the derivative of f1 by using Formula (3),...Ch. 3.3 - Complete each part to establish that the...Ch. 3.3 - Prove that the reflection about the line y=x of a...Ch. 3.3 - Suppose that and are increasing functions....Ch. 3.3 - Suppose that f and g are one-to-one functions....Ch. 3.3 - Find dy/dx . y=e7xCh. 3.3 - Find dy/dx . y=e5x2Ch. 3.3 - Find dy/dx . y=x3exCh. 3.3 - Find dy/dx . y=e1/xCh. 3.3 - Find dy/dx . y=exexex+exCh. 3.3 - Find dy/dx . y=sinexCh. 3.3 - Find dy/dx . y=extanxCh. 3.3 - Find dy/dx . y=exlnxCh. 3.3 - Find dy/dx . y=exe3xCh. 3.3 - Find dy/dx . y=exp1+5x3Ch. 3.3 - Find dy/dx . y=ln1xexCh. 3.3 - Find dy/dx . y=lncosexCh. 3.3 - Find fx by Formula (7) and then by logarithmic...Ch. 3.3 - Find fx by Formula (7) and then by logarithmic...Ch. 3.3 - Find fx by Formula (7) and then by logarithmic...Ch. 3.3 - Find fx by Formula (7) and then by logarithmic...Ch. 3.3 - Find dy/dx using the method of logarithmic...Ch. 3.3 - Find dy/dx using the method of logarithmic...Ch. 3.3 - Find dy/dx using the method of logarithmic...Ch. 3.3 - Find dy/dx using the method of logarithmic...Ch. 3.3 - Find dy/dx using the method of logarithmic...Ch. 3.3 - (a) Explain why Formula (5) cannot be used to find...Ch. 3.3 - Find dy/dx using any method. y=x32x2+1exCh. 3.3 - Find dy/dx using any method. y=2x22x+1e2xCh. 3.3 - Find dy/dx using any method. y=x2+x3xCh. 3.3 - Find dy/dx using any method. y=x3+x35xCh. 3.3 - Find dy/dx using any method. y=43sinxexCh. 3.3 - Find dy/dx using any method. y=2cosx+lnxCh. 3.3 - Find dy/dx . y=sin13xCh. 3.3 - Find dy/dx . y=cos1x+12Ch. 3.3 - Find dy/dx . y=sin11/xCh. 3.3 - Find dy/dx . y=cos1cosxCh. 3.3 - Find dy/dx . y=tan1x3Ch. 3.3 - Find dy/dx . y=sec1x5Ch. 3.3 - Find dy/dx . y=tanx1Ch. 3.3 - Find dy/dx . y=1tan1xCh. 3.3 - Find dy/dx . y=exsec1xCh. 3.3 - Find dy/dx . y=lncos1xCh. 3.3 - Find dy/dx . y=sin1x+cos1xCh. 3.3 - Find dy/dx . y=x2sin1x3Ch. 3.3 - Find dy/dx . y=sec1x+csc1xCh. 3.3 - Find dy/dx . y=csc1exCh. 3.3 - Find dy/dx . y=cot1xCh. 3.3 - Find dy/dx . y=cot1xCh. 3.3 - Determine whether the statement is true or false....Ch. 3.3 - Determine whether the statement is true or false....Ch. 3.3 - Determine whether the statement is true or false....Ch. 3.3 - Determine whether the statement is true or false....Ch. 3.3 - (a) Use Formula (2) to prove that ddxcot1xx=0=1...Ch. 3.3 - (a) Use part (c) of Exercise 30 in Section 1.7 and...Ch. 3.3 - Find dy/dx by implicit differentiation....Ch. 3.3 - Find dy/dx by implicit differentiation....Ch. 3.3 - (a) Show that fx=x33x2+2x is not one-to-one on ,+...Ch. 3.3 - (a) Show that fx=x42x3 is not one-to-one on ,+ ....Ch. 3.3 - Let fx=x4+x3+1,0x2 . (a) Show that f is...Ch. 3.3 - Let fx=exp4x2x,x0 . (a) Show that f is one-to-one....Ch. 3.3 - Show that for any constant A and k , then function...Ch. 3.3 - Show that for any constants A and B , the function...Ch. 3.3 - Show that (a) y=xex satisfies the equation xy=1xy...Ch. 3.3 - Suppose that a new car is purchased for $20,000...Ch. 3.3 - Suppose that the percentage of U.S. households...Ch. 3.3 - Suppose that the population of oxygen-dependent...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Find the limit by interpreting the expression as...Ch. 3.3 - Suppose that a steel ball bearing is released...Ch. 3.4 - If A=x2 and dxdt=3 , find dAdtx=10.Ch. 3.4 - If A=x2 and dAdt=3 , find dxdtx=10.Ch. 3.4 - A 10-foot ladder stands on a horizontal floor and...Ch. 3.4 - Suppose that a block of ice in the shape of a...Ch. 3.4 - Both x and y denote functions of t that are...Ch. 3.4 - Both x and y denote functions of t that are...Ch. 3.4 - Both x and y denote functions of t that are...Ch. 3.4 - Both x and y denote functions of t that are...Ch. 3.4 - Let A be the area of a square whose sides have...Ch. 3.4 - Prob. 6ESCh. 3.4 - Let V be the volume of a cylinder having height h...Ch. 3.4 - Let l be the length of a diagonal of a rectangle...Ch. 3.4 - Let (in radians) be an acute angle in a right...Ch. 3.4 - Suppose that z=x3y2 , where both x and y are...Ch. 3.4 - The minute hand of a certain clock is 4in long....Ch. 3.4 - A stone dropped into a still pond sends out a...Ch. 3.4 - Oil spilled from a ruptured tanker spreads in a...Ch. 3.4 - A spherical balloon is inflated so that its volume...Ch. 3.4 - A spherical balloon is to be deflated so that its...Ch. 3.4 - A 17ft ladder is leaning against a wall. If the...Ch. 3.4 - A 13ft ladder is leaning against a wall. If the...Ch. 3.4 - A 10ft plank is leaning against a wall. If at a...Ch. 3.4 - A softball diamond is a square whose sides are...Ch. 3.4 - A rocket, rising vertically, is tracked by a radar...Ch. 3.4 - For the camera and rocket shown in Figure 3.4.5,...Ch. 3.4 - For the camera and rocket shown in Figure 3.4.5,...Ch. 3.4 - A satellite is in an elliptical orbit around the...Ch. 3.4 - An aircraft is flying horizontally at a constant...Ch. 3.4 - A conical water tank with vertex down has a radius...Ch. 3.4 - Grain pouring from a chute at the rate of 8ft3/min...Ch. 3.4 - Sand pouring from a chute forms a conical pile...Ch. 3.4 - Wheat is poured through a chute at the rate of...Ch. 3.4 - An aircraft is climbing at a 30 angle to the...Ch. 3.4 - A boat is pulled into a dock by means of a rope...Ch. 3.4 - For the boat in Exercise 30, how fast must the...Ch. 3.4 - A man 6ft tall is walking at the rate of 3ft/s...Ch. 3.4 - A beacon that makes one revolution every 10s is...Ch. 3.4 - An aircraft is flying at a constant altitude with...Ch. 3.4 - Solve Exercise 34 under the assumption that the...Ch. 3.4 - A police helicopter is flying due north at 100mi/h...Ch. 3.4 - Prob. 37ESCh. 3.4 - A point P is moving along the curve whose equation...Ch. 3.4 - A point P is moving along the line whose equation...Ch. 3.4 - Prob. 40ESCh. 3.4 - A particle is moving along the curve y=x/x2+1 ....Ch. 3.4 - A new design for a wind turbine adjusts the length...Ch. 3.4 - The thin lens equation in physics is 1s+1S=1f...Ch. 3.4 - Water is stored in a cone-shaped reservoir (vertex...Ch. 3.4 - A meteor enters the Earth’s atmosphere and bums...Ch. 3.4 - On a certain clock the minute hand is 4in long and...Ch. 3.4 - Coffee is poured at a uniform rate of 20cm3/s into...Ch. 3.5 - The local linear approximation of f at x0 use the ...Ch. 3.5 - Find an equation for the local linear...Ch. 3.5 - Let y=5x2 . Find dy and y at x=2 with dx=x=0.1 .Ch. 3.5 - Prob. 4QCECh. 3.5 - (a) Use Formula (1) to obtain the local linear...Ch. 3.5 - (a) Use Formula (1) to obtain the local linear...Ch. 3.5 - (a) Find the local linear approximation of the...Ch. 3.5 - A student claims that whenever a local linear...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the stated formula is the local...Ch. 3.5 - Confirm that the formula is the local linear...Ch. 3.5 - Confirm that the formula is the local linear...Ch. 3.5 - Confirm that the formula is the local linear...Ch. 3.5 - Confirm that the formula is the local linear...Ch. 3.5 - (a) Use the local linear approximation of sinx at...Ch. 3.5 - (a) Use the local linear approximation of at to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - Use an appropriate local linear approximation to...Ch. 3.5 - The approximation 1+xk1+kx is commonly used by...Ch. 3.5 - Use the approximation 1+xk1+kx , along with some...Ch. 3.5 - Referring to the accompanying figure, suppose that...Ch. 3.5 - Prob. 37ESCh. 3.5 - (a) Let y=x . Find dy and y at x=9 with dx=x=1 ....Ch. 3.5 - Find formulas for and .
Ch. 3.5 - Find formulas for and .
Ch. 3.5 - Find formulas for dy and y . y=x22x+1Ch. 3.5 - Find formulas for and .
Ch. 3.5 - Find the differential dy . (a) y=4x37x2 (b)...Ch. 3.5 - Find the differential .
(a)
(b)
Ch. 3.5 - Find the differential dy . (a) y=x1x (b) y=1+x17Ch. 3.5 - Find the differential dy . (a) y=1x31 (b) y=1x32xCh. 3.5 - Determine whether the statement is true or false....Ch. 3.5 - Determine whether the statement is true or false....Ch. 3.5 - Determine whether the statement is true or false....Ch. 3.5 - Determine whether the statement is true or false....Ch. 3.5 - Use the differential to approximate when ...Ch. 3.5 - Use the differential dy to approximate y when x...Ch. 3.5 - Use the differential dy to approximate y when x...Ch. 3.5 - Use the differential dy to approximate y when x...Ch. 3.5 - The side of a square is measured to be 10ft , with...Ch. 3.5 - The side of a cube is measured to be 25cm , with a...Ch. 3.5 - The hypotenuse of a right triangle is known to be...Ch. 3.5 - One side of a right triangle is known to be 25cm...Ch. 3.5 - The electrical resistance R of a certain wire is...Ch. 3.5 - A long high-voltage power line is 18feet above the...Ch. 3.5 - The area of a right triangle with a hypotenuse of...Ch. 3.5 - The side of a square is measured with a possible...Ch. 3.5 - The side of a cube is measured with a possible...Ch. 3.5 - The volume of a sphere is to be computed from a...Ch. 3.5 - The area of a circle is to be computed from a...Ch. 3.5 - A steel cube with 1-inch sides is coated with...Ch. 3.5 - A metal rod 15cm long and 5cm in diameter is to be...Ch. 3.5 - The time required for one complete oscillation of...Ch. 3.5 - The magnitude R of an earthquake on the Richter...Ch. 3.5 - Suppose that the time T (in days) for a cancerous...Ch. 3.5 - Explain why the local linear approximation of a...Ch. 3.6 - Prob. 1QCECh. 3.6 - Evaluate each of the limits in Quick Check...Ch. 3.6 - Using L’Hopital’s rule, limx+ex500x2=.Ch. 3.6 - Evaluate the given limit without using...Ch. 3.6 - Evaluate the given limit without using...Ch. 3.6 - Determine whether the statement is true or false....Ch. 3.6 - Determine whether the statement is true or false....Ch. 3.6 - Determine whether the statement is true or false....Ch. 3.6 - Determine whether the statement is true or false....Ch. 3.6 - Find the limits. limx0ex1sinxCh. 3.6 - Find the limits. limx0sin2xsin5xCh. 3.6 - Prob. 9ESCh. 3.6 - Find the limits. limt0tet1etCh. 3.6 - Prob. 11ESCh. 3.6 - Prob. 12ESCh. 3.6 - Find the limits. limx+lnxxCh. 3.6 - Find the limits. limx+e3xx2Ch. 3.6 - Find the limits. limx0+cotxlnxCh. 3.6 - Find the limits. limx0+1lnxe1/xCh. 3.6 - Find the limits. limx+x100exCh. 3.6 - Find the limits. limx0+lnsinxlntanxCh. 3.6 - Find the limits. limx0sin12xxCh. 3.6 - Find the limits. limx0xtan1xx3Ch. 3.6 - Find the limits. limx+xexCh. 3.6 - Find the limits. limxxtan12xCh. 3.6 - Find the limits. limx+xsinxCh. 3.6 - Find the limits. limx0+tanxlnxCh. 3.6 - Prob. 25ESCh. 3.6 - Find the limits. limxxcotxCh. 3.6 - Find the limits. limx+13/xxCh. 3.6 - Find the limits. limx01+2x3/xCh. 3.6 - Prob. 29ESCh. 3.6 - Find the limits. limx+1+a/xbxCh. 3.6 - Prob. 31ESCh. 3.6 - Find the limits. limx+cos2/xx2Ch. 3.6 - Find the limits. limx0cscx1/xCh. 3.6 - Find the limits. limx01x2cos3xx2Ch. 3.6 - Find the limits. limx+x2+xxCh. 3.6 - Find the limits. limx01x1ex1Ch. 3.6 - Find the limits. limx+xlnx2+1Ch. 3.6 - Find the limits. limx+lnxln1+xCh. 3.6 - Find the limits. limx0+xsinxCh. 3.6 - Find the limits. limx0+e2x1xCh. 3.6 - Find the limits. limx0+1lnxxCh. 3.6 - Find the limits. limx+x1/xCh. 3.6 - Find the limits. limx+lnx1/xCh. 3.6 - Find the limits. limx0+lnxxCh. 3.6 - Prob. 45ESCh. 3.6 - Show that for any positive integer n (a)...Ch. 3.6 - (a) Find the error in the following calculation:...Ch. 3.6 - (a) Find the error in the following calculation:...Ch. 3.6 - Make a conjecture about the limit by graphing the...Ch. 3.6 - Make a conjecture about the limit by graphing the...Ch. 3.6 - Make a conjecture about the limit by graphing the...Ch. 3.6 - Make a conjecture about the limit by graphing the...Ch. 3.6 - Make a conjecture about the equations of...Ch. 3.6 - Make a conjecture about the equations of...Ch. 3.6 - Make a conjecture about the equations of...Ch. 3.6 - Make a conjecture about the equations of...Ch. 3.6 - Prob. 57ESCh. 3.6 - There is a myth that circulates among beginning...Ch. 3.6 - Verify that L’Hopital’s rule is of no help in...Ch. 3.6 - Verify that L’Hopital’s rule is of no help in...Ch. 3.6 - Verify that L’Hopital’s rule is of no help in...Ch. 3.6 - Verify that L’Hopital’s rule is of no help in...Ch. 3.6 - The accompanying schematic diagram represents an...Ch. 3.6 - (a) Show that limx/2/2xtanx=1 . (b) Show that...Ch. 3.6 - (a) Use a CAS to show that if k is a positive...Ch. 3.6 - Find all values of k and l such that...Ch. 3.6 - Let fx=x2sin1/x . (a) Are the limits limx0+fx and...Ch. 3.6 - (a) Explain why L’Hopital’s rule does not...Ch. 3.6 - Find limx0+xsin1/xsinx if it exists.Ch. 3.6 - Suppose that functions f and g are differentiable...Ch. 3.6 - Were we to use L’Hopital’s mle to evaluate...Ch. 3 - (a) Find dy/dx by differentiating implicitly, (b)...Ch. 3 - (a) Find dy/dx by differentiating implicitly, (b)...Ch. 3 - Find dy/dx by implicit differentiation. 1y+1x=1Ch. 3 - Find dy/dx by implicit differentiation. x3y3=6xyCh. 3 - Find dy/dx by implicit differentiation. secxy=yCh. 3 - Find dy/dx by implicit differentiation....Ch. 3 - Find d2y/dx2 by implicit differentiation. 3x24y2=7Ch. 3 - Find d2y/dx2 by implicit differentiation. 2xyy2=3Ch. 3 - Use implicit differentiation to find the slope of...Ch. 3 - At what point(s) is the tangent line to the curve...Ch. 3 - Prove that if P and Q are two distinct points on...Ch. 3 - Find the coordinates of the point in the first...Ch. 3 - Find the coordinates of the point in the first...Ch. 3 - Use implicit differentiation to show that the...Ch. 3 - Find dy/dx by first using algebraic properties of...Ch. 3 - Find dy/dx by first using algebraic properties of...Ch. 3 - Find dy/dx . y=ln2xCh. 3 - Find dy/dx . y=lnx2Ch. 3 - Find dy/dx . y=lnx+13Ch. 3 - Find dy/dx . y=lnx+13Ch. 3 - Find dy/dx . y=loglnxCh. 3 - Find dy/dx . y=1+logx1logxCh. 3 - Find dy/dx . y=lnx3/21+x4Ch. 3 - Find dy/dx . y=lnxcosx1+x2Ch. 3 - Find dy/dx . y=elnx2+1Ch. 3 - Find dy/dx . y=ln1+ex+e2x1e3xCh. 3 - Find dy/dx . y=2xexCh. 3 - Find dy/dx . y=a1+bexCh. 3 - Find dy/dx . y=1tan12xCh. 3 - Find dy/dx . y=2sin1xCh. 3 - Find dy/dx . y=xexCh. 3 - Find dy/dx . y=1+x1/xCh. 3 - Find dy/dx . y=sec12x+1Ch. 3 - Find dy/dx . y=cos1x2Ch. 3 - Find dy/dx using logarithmic differentiation....Ch. 3 - Find dy/dx using logarithmic differentiation....Ch. 3 - (a) Make a conjecture about the shape of the graph...Ch. 3 - Recall from Section 1.8 that the loudness of a...Ch. 3 - A particle is moving along the curve y=xlnx . Find...Ch. 3 - Find the equation of the tangent fine to the graph...Ch. 3 - Find the value of b so that the line y=x is...Ch. 3 - In each part, find the value of k for which the...Ch. 3 - If f and g are inverse functions and f is...Ch. 3 - In each part, find f1x using Formula (2) of...Ch. 3 - Find a point on the graph of y=e3x at which the...Ch. 3 - Show that the rate of change of y=5000e1.07x is...Ch. 3 - Show that the rate of change of y=32x57x is...Ch. 3 - The equilibrium constant k of a balanced chemical...Ch. 3 - Show that the function y=eaxsinbx satisfies...Ch. 3 - Show that the function y=tan1x satisfies...Ch. 3 - Suppose that the population of deer on an island...Ch. 3 - In each part, find each limit by interpreting the...Ch. 3 - Suppose that limfx= and limgx= . In each of the...Ch. 3 - (a) Under what conditions will a limit of the form...Ch. 3 - Evaluate the given limit. limx+exx2Ch. 3 - Evaluate the given limit. limx1lnxx41Ch. 3 - Evaluate the given limit. limx0x2e2sin23xCh. 3 - Evaluate the given limit. limx0ax1x,a0Ch. 3 - An oil slick on a lake is surrounded by a floating...Ch. 3 - The hypotenuse of a right triangle is growing at a...Ch. 3 - In each part, use the given information to find...Ch. 3 - Use an appropriate local linear approximation to...Ch. 3 - The base of the Great Pyramid at Giza is a square...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Verifying Stokes Theorem Verify that the line integral and the surface integral of Stokes Theorem are equal for...
Calculus: Early Transcendentals (2nd Edition)
In Problems 31-42: (a) Find the domain of each function. (b) Locate any intercepts. (c) Graph each function. (d...
Precalculus (10th Edition)
Maximum product What two nonnegative real numbers with a sum of 23 have the largest possible product?
Single Variable Calculus: Early Transcendentals (2nd Edition) - Standalone book
At what points are the functions in Exercise continuous?
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- A basketball has a volume of about 455.9 cubic inches. Find the radius of the basketball (accurate to three decimal places).arrow_forwarda For the through in the shape of half-cylinder, find the volume of water it will hold Use 3.14 and disregard the thickness b If the trough is to be painted inside and out, find the number of square feet to be painted Use 3.14.arrow_forwardA driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What is the average rate of flow of the gasoline into the gas tank?arrow_forward
- A farmer wants to repaint a thin, cylindrical water tank on their property. He only needs to paint the outer surface, not the top or the bottom of the cylinder. The tank has a height of 120 centimeters.and the base radius of the tank is 60 mm. Using linear approximations, estimate the volume of paint needed to add a layer 0.5mm thick to the curved outer surface.The volume of a cylinder can be calculated by V = pi(r^2)harrow_forwarda hemischperical dome has a diameter of 50 m. use differentials to estimate the amount of paint needed to apply a coat of paint 5 mm thick.arrow_forwardA right-circular cylinder has a height which is three times its diameter. The diameter of the cylinder is measured to be 8cm with an uncertainty of 0.1cm. Use differentials to find the uncertainty in the calculated volume of the cylinder. What is the relative and percentage error.arrow_forward
- A painting contractor charges Php 120 per sq.m. for painting the four walls and ceiling of a room. If the dimension of the ceiling are measured to be 4, and 5m, the height of the room is measured to be 3m, and these measurements are correct to 0.5cm, find approximately, by using total differential, the greatest error in estimating the cost of the job from theses measurements.arrow_forwardIV. The dimensions of a closed rectangular box are measured as 10cm, 11cm, and 18 cm with a possible error 0.03 cm in each dimension. a) Estimate the amount of error (absolute change)in calculating the surface area of the box using differentials. b) Find also relative change in percentage.arrow_forwardThe radius of a sphere is given as 27 cm with a maximum error in measurement of .05 cm.Use differentials to find the percent error in the calculated volume of the sphere and thecalculated surface area of the sphere.arrow_forward
- The Spicee Pepa’Roni Pizza Company serves large circular pizzas with a diameter of 18 inches. Use differentials to estimate the error in the area of a pizza if the diameter has a measurement error of +- 0.050 inchesarrow_forwardA circular plate is measured to have a diameter of 3.5 feet if the measurement could be off by as much as 0.1 feet use differentials to estimate the possible area when calculating the area of the platearrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY