Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
100%
Book Icon
Chapter 35, Problem 35.46P

(a)

To determine

The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and outside air.

(a)

Expert Solution
Check Mark

Answer to Problem 35.46P

The critical angle of refraction at air-diamond interface is 24.418° .

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown below.

Physics for Scientists and Engineers, Volume 1, Chapters 1-22, Chapter 35, Problem 35.46P , additional homework tip  1

Figure (I)

From Snell’s law of refraction to air-diamond interface to find the critical angle is,

n1sinθ1=n2sinθ2sinθ1=n2n1sinθ2θ1=sin1(n2sinθ2n1) (1)

Here,

θ1 is the incident angle.

n1 is refractive index of diamond.

n2 is refractive index of air.

θ2 is the refracted angle.

The value of θ2 at critical angle is 90° , the refractive index of air is 1 , refractive index of diamond is 2.419 and angle of incidence θ1 become θc .

Substitute 1 for n2 , 2.419 for n1 and 90° for θ2 in equation (1) and find θc. .

θc=sin1((1)sin(90°)2.419)=sin1(12.419)=sin1(0.413)=24.418

Thus, the critical angle of refraction at air-diamond interface is 24.418° .

Conclusion:

Therefore, the critical angle of refraction at air-diamond interface is 24.418° .

(b)

To determine

To show: The light travelling towards point P in the diamond is totally reflected.

(b)

Expert Solution
Check Mark

Answer to Problem 35.46P

The angle of incidence is more than the critical angle all light is reflected from point P.

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).

The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and outside air is 24.418° and angle of incidence as shown in Figure (1) is 35° , which is more than the critical angle. As per the Snell’s law If the incident angle is more than the critical angle than all the light is totally reflected from the surface.

Conclusion:

Therefore, the angle of incidence is more than the critical angle all light is reflected from point P.

(c)

To determine

The critical angle for total internal reflection for light in the diamond when the diamond is immersed in the water.

(c)

Expert Solution
Check Mark

Answer to Problem 35.46P

The critical angle of incidence at water-diamond interface is 33.439 .

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).

From Snell’s law of refraction to water-diamond interface to find the critical angle is,

n1sinθ1=n2sinθ2sinθ1=n2n1sinθ2θ1=sin1(n2sinθ2n1) (2)

Here,

θ1 is the incident angle.

n1 is refractive index of diamond.

n2 is refractive index of air.

θ2 is the refracted angle.

The value of θ2 at critical angle is 90° , the refractive index of water is 1.333 , refractive index of diamond is 2.419 and angle of incidence θ1 become θc .

Substitute 1 for n2 , 2.419 for n1 and 90° for θ2 in equation (2) and find θc. .

θc=sin1((1.333)sin(90°)2.419)=sin1(1.3332.419)=sin1(0.5510)=33.439

Thus, the critical angle of incidence at water-diamond interface is 33.439 .

Conclusion:

Therefore, the critical angle of incidence at water-diamond interface is 33.439 .

(d)

To determine

The ray incident at point P undergoes total internal reflection or not when diamond is immersed in the water.

(d)

Expert Solution
Check Mark

Answer to Problem 35.46P

Yes, the light ray undergoes total internal reflection at point P when diamond is immersed in the water.

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).

The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and water is 33.439 and angle of incidence as shown in Figure (1) is 35° , which is more than the critical angle. As per the Snell’s law If the incident angle is more than the critical angle than the total internal reflection will occur.

Thus, the light undergoes total internal reflection at P when diamond is immersed in the water.

Conclusion:

Therefore, the light undergoes total internal reflection at P when diamond is immersed in the water.

(e)

To determine

The direction in which the diamond is rotated such that the light at a point P will exit the diamond.

(e)

Expert Solution
Check Mark

Answer to Problem 35.46P

The diamond is rotated in clockwise direction on the axis perpendicular to the page through O .

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).

The critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and water is 33.439 and angle of incidence as shown in Figure (1) is 35° , which is more than the critical angle. As per the Snell’s law If the incident angle is more than the critical angle than the total internal reflection will occur.

The light will exit from the diamond only when the incident angle is less than the critical angle. So, to reduce the angle of incidence the diamond should be rotated in clockwise direction on the axis perpendicular to the plane of paper.

Thus, the light will exit at point P when the angle of incidence is changed by rotating the diamond in clockwise direction.

Conclusion:

Therefore, the light will exit at point P when the angle of incidence is changed by rotating the diamond in clockwise direction.

(f)

To determine

The angle of rotation at which the light first exit the diamond at point P .

(f)

Expert Solution
Check Mark

Answer to Problem 35.46P

The diamond is rotated by 2.83° clockwise for the ray to exit at point P .

Explanation of Solution

Given info: The condition for light ray travelling between air and a diamond is shown in figure (I).

Let the angle is rotated clockwise by θ° , the angle of incidence θ1 is changed , causing the angle of refraction θ to change.

Apply Snell’s law at the water-diamond interface.

n1sinθ1=n2sinθ21.333sinθ1=2.419sinθ2 (3)

The condition of the situation is shown below.

Physics for Scientists and Engineers, Volume 1, Chapters 1-22, Chapter 35, Problem 35.46P , additional homework tip  2

Figure (II)

The angle at the vertex B as shown in Figure (1) is 35° because the extended line AB is parallel to the EF extended from the base of the diamond. From the sum of the interior angles of ABP find angle θ3 .

(90°θ2)+(90θ3)+35°=180θ3=35°θ2

The requirement is that the angle of incidence θ3 results in an angle of refraction 90° .

Apply Snell’s law and find angle θ2 .

n1sinθ3=n2sin90°2.419sin(35°θ2)=1.33335°θ2=sin1(1.332.419)θ2=1.561°

Substitute 1.561° for θ2 in equation (3) and find.

1.333sinθ=2.419sin(1.561°)sinθ=3.7761.333θ=2.83°

Thus, the diamond is rotated by 2.83° clockwise for the ray to exit at point P .

Conclusion:

Therefore, the diamond is rotated by 2.83° clockwise for the ray to exit at point P .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider a light ray traveling between air and a diamond cut in the shape shown in Figure P22.42. (a) Find the critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and the outside air. (b) Consider the light ray incident normally on the top surface of the diamond as shown in Figure P22.42. Show that the light traveling toward point P in the diamond is totally reflected. (c) If the diamond is immersed in water, find the critical angle at the diamond−water interface. (d) When the diamond is immersed in water, does the light ray entering the top surface in Figure P22.42 undergo total internal reflection at P ? Explain. (e) If the light ray entering the diamond remains vertical as shown in Figure P22.42, which way should the diamond in the water be rotated about an axis perpendicular to the page through 0 so that light will exit the diamond at P ? (f) At what angle of rotation in part (e) will light first exit the diamond at…
A light ray is incident at an angle x on the top surface of a block of plastic with n = 1.49. Find the maximum value of x for which the refracted ray undergoes total internal reflection at point P at the left vertical interface of the block.  Assume the block is immersed in water (nWATER = 1.33 ).
Consider a light ray traveling between air and a diamond cut in the shape as shown. (a) Find the critical angle for total internal reflection for light in the diamond incident on the interface between the diamond and the outside air. (b) Consider the light ray incident normally on the top surface of the diamond as shown. Show that the light traveling toward point P in the diamond is totally reflected. What If? Suppose the diamond is immersed in water. (c) What is the critical angle at the diamond– water interface? (d) When the diamond is immersed in water, does the light ray entering the top surface as shown undergo total internal reflection at P? Explain. (e) If the light ray entering the diamond remains vertical as shown, which way should the diamond in the water be rotated about an axis perpendicular to the page through O so that light will exit the diamond at P? (f) At what angle of rotation in part (e) will light first exit the diamond at point P?

Chapter 35 Solutions

Physics for Scientists and Engineers, Volume 1, Chapters 1-22

Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning