Physics for Scientists and Engineers, Volume 1, Chapters 1-22
8th Edition
ISBN: 9781439048382
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35, Problem 35.13P
A prism that has an apex angle of 50.0° is made of cubic zirconia. What is its minimum angle of deviation?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
shows a lamina which is symmetrical about its centroidal axis.
40
R30
9 70°
(a)
Find the first and second moments of area of the figure.
(b)
Determine the centroid of the area.
Physics Question
When a man stands near the edge of an empty drainage ditch of depth 2.80 m, he can barely see the boundary between
the opposite wall and bottom of the ditch as in Figure (a) shown below. The distance from his eyes to the ground is
h = 1.88 m. (Assume 0 = 27.6°.)
IA
h
d
a
b
Ө
m
0
2.80 m
(a) What is the horizontal distance d from the man to the edge of the drainage ditch?
d =
(b) After the drainage ditch is filled with water as in Figure (b) shown above, what is the maximum distance x the
man can stand from the edge and still see the same boundary?
X =
m
Chapter 35 Solutions
Physics for Scientists and Engineers, Volume 1, Chapters 1-22
Ch. 35 - Prob. 35.1QQCh. 35 - If beam is the incoming beam in Figure 34.10b,...Ch. 35 - Light passes from a material with index of...Ch. 35 - In photography, lenses in a camera use refraction...Ch. 35 - Prob. 35.5QQCh. 35 - In each of the following situations, a wave passes...Ch. 35 - A source emits monochromatic light of wavelength...Ch. 35 - Carbon disulfide (n = 1.63) is poured into a...Ch. 35 - A light wave moves between medium 1 and medium 2....Ch. 35 - What happens to a light wave when it travels from...
Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- I need helparrow_forwardThe figure below is a composite body consisting of the following parts: [1] the triangular prism of length 120 mm, width of (B-18) mm and thickness A mm; [2] the rectangular parallelepiped of length 160 mm, width A mm and thickness 18 mm; [3] the semicircular part with diameter A mm and thickness 18 mm; [4] the hole of radius 16 mm and thickness 18 mm. Dimension A = 67 mm; B = 75 mm. For part 1, determine its volume in mm^3. For part 2, determine its volume in mm^3. For part 3, determine its volume in mm^3. For part 4, determine its volume in mm^3 (answer must be negative!). For the composite body, determine its total volume in mm^3. Determine the y-centroid for part 1 in mm. Determine the z-centroid for part 3 in mm. Determine the x-centroid for part 1 in mm. Determine the x-centroid for part 2 in mm. Determine the x-centroid for part 3 in mm. Determine the x-centroid for part 4 in mm. Determine the x-centroid for the composite body in mm. Determine the y-centroid for the…arrow_forwardThe figure below is a composite body consisting of the following parts: [1] the triangular prism of length 120 mm, width of (B-18) mm and thickness A mm; [2] the rectangular parallelepiped of length 160 mm, width A mm and thickness 18 mm; [3] the semicircular part with diameter A mm and thickness 18 mm; [4] the hole of radius 16 mm and thickness 18 mm. Dimension A = 52 mm; B = 51 mm. Determine the y-centroid for part 1 in mm.arrow_forward
- A vector function is given as A = x(x - 4) ey/6 cos(zπ/2) What is the result of f(VA) dv over the rectangular prism volume shown in the figure? Note: You can use the Divergence Theorem. (π = 3.14) (e = 2.71) -6 cm- 4 cm cmarrow_forwardOn a clear day a tiny fish hides under water (n water = 1.39 ) from an osprey under a circular leaf that has a diameter of 0.175 m. What is the maximum depth below the leaf that the fish can be so that it could not be spotted by the ospray? Provide your answer in meters with a precision of four places after the decimal.arrow_forwardWhat is the critical angle for the interface between material 1 (n=1.58) and material 2 (n=1.30)?arrow_forward
- Problem 19arrow_forward8m 1. Refer to the given figure. The two rectangular prism has a 2000g and 2800g weight. What is the density of the whole prism? Hint: Vrectangutar prism = lwh 12 m 6 m 10 marrow_forwardA statue 4.23 meters high is standing on a base of 4.90 meters high. If an observer's eye is 1.93 meters above the ground, how far should he stand from the base so the angle subtended by the statue is maximum?arrow_forward
- Manuel is scuba diving near a school of fish at a depth of −9.5 feet relative to sea level. Then he descends to look at a coral reef so that his depth changes by 4/5 of the current value. Find Manuel's depth, relative to sea level, near the coral reef.arrow_forwardPhysics HW need Help?can anyone explain in detail and step by step how to find the max angle in this problem?arrow_forwardQ1: At a resection point P, the following horizontal angles were observed to three control points L, M and N: LP'N=112°15'03" NP M = 126°42'41" MP L= 121°02' 19" The coordinates of L, M and N are E (m) N (m) L 500 600.528 M 610.076 400.187 N 700.004 640.132 Calculate the coordinates of point P. N <112:15:03 121 02 126°42'41"arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY