
Concept explainers
(a)
To show: Light will pass symmetrically through the prism if the angle of incidence on the first surface
(a)

Answer to Problem 28P
The light will pass symmetrically through the prism, if the angle of incidence on the first surface
Explanation of Solution
Given information: The apex angle is
The diagram for the given condition is shown below.
Figure (1)
Apply Snell’s law of refraction at the first interface.
The Snell’s law of refraction is,
Here,
Substitute
Apply Snell’s law of refraction at the second interface.
The Snell’s law of refraction is,
Here,
Substitute
Since,
Conclusion:
Therefore, the light will pass symmetrically through the prism.
(b)
The angle of minimum deviation
(b)

Answer to Problem 28P
The angle of minimum deviation
Explanation of Solution
Given information: The apex angle is
The angle of minimum deviation
Here,
Substitute
Conclusion:
Therefore, the orientation angle in the proper frame is
(c)
The angle of minimum deviation
(c)

Answer to Problem 28P
The angle of minimum deviation
Explanation of Solution
Given information: The apex angle is
Apply Snell’s law of refraction at the first interface.
The Snell’s law of refraction is,
Here,
Substitute
Apply Snell’s law of refraction at the second interface.
The Snell’s law of refraction is,
Here,
Substitute
The angle of minimum deviation
Here,
Substitute
Conclusion:
Therefore, the orientation angle in the proper frame is
(d)
The angle of minimum deviation
(d)

Answer to Problem 28P
The angle of minimum deviation
Explanation of Solution
Given information: The apex angle is
Apply Snell’s law of refraction at the first interface.
The Snell’s law of refraction is,
Here,
Substitute
Apply Snell’s law of refraction at the second interface.
The Snell’s law of refraction is,
Here,
Substitute
The angle of minimum deviation
Here,
Substitute
Conclusion:
Therefore, the orientation angle in the proper frame is
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





