
(a)
The wave-function of the particle.
(a)

Answer to Problem 21P
Thewave function of the particles is
Explanation of Solution
Given:
The particle is constrained to move in the two dimensional region defined by,
Formula used:
The expression for Schrodinger equation in two dimensionis given by,
Calculation:
Theexpression for Schrödinger's equation with separation of variables for the term
Theexpression for Schrödinger's equation with separation of variables for the term
The above familiar differential equations have the usual solution,
Applying the boundary conditions,
Which implies it will have solutions,
Here,
Therefore the wave function corresponds for the state
Conclusion:
Therefore,the wave function of the particle is
(b)
The energy corresponding to the wave function.
(b)

Answer to Problem 21P
The energy corresponding to the wave function are
Explanation of Solution
Calculation:
The
Solving with the corresponding wave function,
The
Conclusion:
Therefore,the energy corresponding to the wave function are
(c)
The quantum numbers of the two lowest states that has degeneracy.
(c)

Answer to Problem 21P
The quantum numbers of the two lowest states that has degeneracy are
Explanation of Solution
Calculation:
The energy for the state
The energy for the state
Conclusion:
Therefore,the quantum numbers of the two lowest states that has degeneracy are
(d)
The quantum numbers of the three lowest states that has degeneracy.
(d)

Answer to Problem 21P
The quantum numbers of the three lowest states that has degeneracy are
Explanation of Solution
Calculation:
The state will have three fold degeneracy are
The energy for the state
The energy for the state
The energy for the state
Conclusion:
Therefore,the quantum numbers of the three lowest states that has degeneracy are
Want to see more full solutions like this?
Chapter 35 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





