PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 10P
To determine

The expectation value of px2 .

Blurred answer
Students have asked these similar questions
One-dimensional harmonic oscillators in equilibrium with a heat bath (a) Calculate the specific heat of the one-dimensional harmonic oscillator as a function of temperature. (b) Plot the T -dependence of the mean energy per particle E/N and the specific heat c. Show that E/N → kT at high temperatures for which kT > hw. This result corresponds to the classical limit and is shown to be an example of the equipartition theorem. In this limit the energy kT is large in comparison to ħw, the separation between energy levels. Hint: expand the exponential function 1 ē = ħw + eBhw (c) Show that at low temperatures for which ħw> kT , E/N = hw(+e-Bhw) What is the value of the heat capacity? Why is the latter so much smaller than it is in the high temperature limit? Why is this behavior different from that of a two-state system? (d) Verify that S →0 as T> O in agreement with the third law of thermodynamics, and that at high T,S> kN In(kT / hw).
Find the probabilities that a particle can be found between x = 0.45 and 0.55 when the particle in limited to the x axis and has wave function.  ψ = {ax,       0 ≤ x ≤ 1    ;   0,    x< 0 and x >1. Also find the average (expectation value) of x.
6QM Please answer question throughly and detailed.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning