FUND. OF PHYSICS, V. 2
FUND. OF PHYSICS, V. 2
12th Edition
ISBN: 9781119801276
Author: Halliday
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 35, Problem 1Q

Does the spacing between fringes in a two-slit interference pattern increase, decrease, or stay the same if (a) the slit separation is increased, (b) the color of the light is switched from red to blue, and (c) the whole apparatus is submerged in cooking sherry? (d) If the slits are illuminated with white light, then at any side maximum, does the blue component or the red component peak closer to the central maximum?

Expert Solution & Answer
Check Mark
To determine

To find:

a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?

b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?

c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?

d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?

Answer to Problem 1Q

Solution:

a) The spacing between the fringes in a two-slit interference pattern decreases if the slit separation is increased.

b) The spacing between the fringes in a two-slit interference pattern decreases if the color of the light is switched from red to blue.

c) The spacing between the fringes in a two-slit interference pattern decreases if the whole apparatus is submerged in cooking sherry.

d) If the slits are illuminated with white light, then at any side maximum the blue component peak will be closer to the central maximum.

Explanation of Solution

1) Concept:

We use the concept of double slit experiment. Using the equation, we can determine whether the spacing between the fringes will increase, decrease or stay same. For part c), we use the relation between the initial and the new wavelength.

2) Formulae:

y=λDd

3) Calculations:

a) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the slit separation is increased?

Using the equation,

y=λDd

In this equation, y is spacing between in the fringes, λ is wavelength, D is distance between the slits and screen and d is the separation between the slits.

From the above equation if we increase the slit separation d, the spacing between the fringes decreases.

b) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the color of the light is switched from red to blue?

We know that the wavelength of the light spectrum decreased from red to blue.

λr>λb

y=λDd

So, here, if λ decreases, then y also decreases.

c) Does the spacing between the fringes in a two-slit interference pattern increase, decrease, or stay the same if the whole apparatus is submerged in cooking sherry?

We know,

n=λiλf

We can write the wavelength as

λf=λin

We get,

y=λfDd

y=λinDd

So, y is inversely proportional to n. Therefore, y decreases.

d) If the slits are illuminated with white light, then at any side maximum does the blue component or the red component peak closer to the central maximum?

Here, the blue component peak will be closer to the central maximum because

yλ

And for the lowest value of y the value of λ must be minimum, which is the blue light.

Hence, the blue component will be closer to the central maximum.

Conclusion:

We can use the concept of double slit experiment to determine the spacing between the fringes.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 35 Solutions

FUND. OF PHYSICS, V. 2

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY