
(a)
The image position of the fishes that are located at 5.00 cm
and 25.0 cm
in front of the aquarium wall.
(a)

Answer to Problem 19P
Explanation of Solution
Given info: The radius of curvature of the curved plastic is
The formula to calculate image position of the fish inside the aquarium is,
Here,
The radius of curvature will be negative the centre of curvature lies on the object side.
For part (i): when the fish is at
Substitute
The image position for the fish at
For part (ii) when the fish is at
From equation (2) the image position is,
The image is at
Conclusion:
Therefore, the image is
(b)
The magnification of the images for part (a)
(b)

Answer to Problem 19P
Explanation of Solution
Explanation
Given info: The radius of curvature of the curved plastic is
The formula to calculate the magnification of the image is,
For part (i): when the fish is at
Substitute
Thus when the fish is at
For part (ii): when the fish is at
Substitute
Thus when the fish is at
Conclusion:
Therefore, when the fish is at
(c)
The reason refractive index of the plastic is not required to solve the problem.
(c)

Answer to Problem 19P
Explanation of Solution
Explanation
The plastic has uniform thickness and the surface from which the ray is entering and the surface from which is leaving are parallel to each other. The ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. The only difference will be due to water-air interface.
Conclusion:
Therefore, the ray might get slightly displaced, but it will not change the direction of its propagation by going through plastic air interface. So the refractive index of plastic is not playing any major role in light propagation.
(e)
The image distance of the fish is greater than the fish itself and the magnification
(e)

Answer to Problem 19P
Explanation of Solution
Explanation
For the object distance greater than the radius of curvature the image distance will greater than the distance at which fish is itself. If the aquarium were very long the radius of curvature will not increase therefore if the object distance is more than the radius of curvature the image of the fish will be at even farther distance away from the fish itself.
Conclusion:
Therefore, If the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
(d)
The magnification of the image when the image of the fish is even farther than the position of fish itself.
(d)

Answer to Problem 19P
Explanation of Solution
For the condition
Formula to calculate the image distance from Lens formula
Substitute
For the condition
Take reciprocal of the above question
Formula to calculate the image distance from Lens formula,
Divide by
The condition is when the image distance is greater than the radius of curvature take the magnitude of the equation.
Substitute
The reciprocal of the equation is
Thus the image of the fish will also be at greater distance than that of radius of curvature.
An example for the above case is let the fish is at twice the distance of the magnitude of radius of curvature.
The image of the fish is calculated from the formula from equation (7).
Substitute
Thus the image of the fish is
The formula to calculate the magnification of the image is,
Substitute
Thus the magnification of the fish image is
Conclusion:
Therefore, if the fish is present at distance larger than the radius of curvature the image of the fish would be even farther than that of fish itself.
Want to see more full solutions like this?
Chapter 35 Solutions
PHYSICS:F/SCI.+ENGRS.,V.1
- A rock is dropped from a height of 2.00 m. Determine the velocity of the rock just before it hits the ground. If the momentum of the rock just before hitting the ground is 14.0 kg m/s, what is the mass of the rock? Is the collision between the rock and the ground elastic or inelastic? Explain.arrow_forwardDescribe how the momentum of a single ball changes as it free falls from a height of approximately 1 m, collides with a hard floor, and rebounds.arrow_forward• Nature of Resistance Temperature-Resistance Relationship Ohm's Law, Energy and Power Kirchhoff's Law • • Maxwell's Mesh Analysis 1. The steel of the third rail of a railway system has a resistivity of 21.4 μ-cm. If its cross-sectional area is 8.2 in², calculate the resistance per mile of rail, neglecting the effect of joints between sections. (1 point) 2. An incandescent lamp has a tungsten filament whose resistance is 96 at its operating temperature of 2900°C. Calculate the filament resistance when the lamp is disconnected from the electric source, under which condition its temperature is 24°C. (Use do = 0.0045 02/°C for tungsten) (1 point) 3. For the circuit shown, find the following: 50 V 602 10 V 702 a. the value of resistor R. (1 point) b. the equivalent resistance with respect to the 50-V source. (1 point) 4. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) A 5V 2 В -ний C 4 6 VT ww F E 5. Use Maxwell's Mesh to find I, and VAB…arrow_forward
- For items 8-9, refer to the problem below. Find all the currents flowing in every resistor, power dissipation in every resistor and the total power of the circuit shown at the right using... 8. Kirchhoff's Laws (5 pts) 9. Maxwell's Mesh Analysis (5 pts) A 8 V 10 V B + 20 Ω 3Ω 202 wwww C wwww 202 + 50 www 12 Varrow_forward• Nature of Resistance Temperature-Resistance Relationship Ohm's Law, Energy and Power Kirchhoff's Law • Maxwell's Mesh Analysis 1. A coil of copper wire (p = 10.37 2-cmil/ft) has a length of 600 ft. What is the length of an aluminum conductor (p 17 cmil/ft), if its cross-sectional area and resistance are the same as those of the copper coil? (Hint: Look for conversion of inches to mils and square inches to square foot. Include it in your solution.) (1 pt) 2. The copper field winding of an electric machine has a resistance of 46 at temperature of 22°C. What will be its resistance at 75°C? (Use do = 0.00427 /°C for copper) (1 pt) 3. The resistivity of a copper rod 50 ft long and 0.25 inch in diameter is 1.76 μ at 20°C. What is its resistance at - 20°C? (1 pt) 4. When two resistors A and B are connected in series, the total resistance is 36 2. When connected in parallel, the total resistance is 8 Q. What is the ratio of the resistance RA to resistance RB? Assume RA < RB. (1 pt) 5. The…arrow_forward2. Two equally strong individuals, wearing exactly the same shoes decide to do a tug of war. The only difference is individual A is 2.5 meters tall and individual B is 1.5 meter tall. Who is more likely to win the tug of war?arrow_forward
- 6. A car drives at steady speed around a perfectly circular track. (a) The car's acceleration is zero. (b) The net force on the car is zero. (c) Both the acceleration and net force on the car point outward. (d) Both the acceleration and net force on the car point inward. (e) If there is no friction, the acceleration is outward.arrow_forward9. A spring has a force constant of 100 N/m and an unstretched length of 0.07 m. One end is attached to a post that is free to rotate in the center of a smooth. table, as shown in the top view in the figure below. The other end is attached to a 1kg disc moving in uniform circular motion on the table, which stretches the spring by 0.03 m. Friction is negligible. What is the centripetal force on the disc? Top View (a) 0.3 N (b) 3.0 N (c) 10 N (d) 300 N (e) 1000 Narrow_forward4. A child has a ball on the end of a cord, and whirls the ball in a vertical circle. Assuming the speed of the ball is constant (an approximation), when would the tension in the cord be greatest? (a) At the top of the circle. (b) At the bottom of the circle. (c) A little after the bottom of the circle when the ball is climbing. (d) A little before the bottom of the circle when the ball is descending quickly. (e) Nowhere; the cord is pulled the same amount at all points.arrow_forward
- 3. In a rotating vertical cylinder (Rotor-ride) a rider finds herself pressed with her back to the rotating wall. Which is the correct free-body diagram for her? (a) (b) (c) (d) (e)arrow_forward8. A roller coaster rounds the bottom of a circular loop at a nearly constant speed. At this point the net force on the coaster cart is (a) zero. (b) directed upward. (c) directed downward. (d) Cannot tell without knowing the exact speed.arrow_forward5. While driving fast around a sharp right turn, you find yourself pressing against the left car door. What is happening? (a) Centrifugal force is pushing you into the door. (b) The door is exerting a rightward force on you. (c) Both of the above. (d) Neither of the above.arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax





