80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O , which is at object distance p 1 . Lens 2 is mounted within the farther Figure 34-35 Problems 80 and 87. boxed region, at distance d . Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted). Find (a) the image distance i 2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side. Table 34-9 Problem 80 through 87: Two-Lens Systems. See the setup for these problems. p 1 Lens 1 d Lens 2 (a) i 2 (b) M (c) R/V (d) I/NI (e) Side 80 +10 C, 15 10 C, 8.0
80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O , which is at object distance p 1 . Lens 2 is mounted within the farther Figure 34-35 Problems 80 and 87. boxed region, at distance d . Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted). Find (a) the image distance i 2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side. Table 34-9 Problem 80 through 87: Two-Lens Systems. See the setup for these problems. p 1 Lens 1 d Lens 2 (a) i 2 (b) M (c) R/V (d) I/NI (e) Side 80 +10 C, 15 10 C, 8.0
80 through 87 GO 80, 87 SSM WWW 83 Two-lens systems. In Fig. 34-45, stick figure O (the object) stands on the common central axis of two thin, symmetric lenses, which are mounted in the boxed regions. Lens 1 is mounted within the boxed region closer to O, which is at object distance p1. Lens 2 is mounted within the farther
Figure 34-35 Problems 80 and 87.
boxed region, at distance d. Each problem in Table 34-9 refers to a different combination of lenses and different values for distances, which are given in centimeters. The type of lens is indicated by C for converging and D for diverging; the number after C or D is the distance between a lens and either of its focal points (the proper sign of the focal distance is not indicted).
Find (a) the image distance i2 for the image produced by lens 2 (the final image produced by the system) and (b) the overall lateral magnification M for the system, including signs. Also, determine whether the final image is (c) real (R) or virtual (V), (d) inverted (I) from object O or noninverted (NI), and (e) on the same side of lens 2 as object O or on the opposite side.
Table 34-9Problem 80 through 87: Two-Lens Systems. See the setup for these problems.
Three point-like charges are placed at the corners of a square as shown in the figure, 28.0
cm on each side. Find the minimum amount of work required by an external force to move
the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.
A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis.
x2 = 19.0 cm
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.