
(a)
The value of
(a)

Answer to Problem 83PQ
The value of
Explanation of Solution
Write the expression for the amplitude of electric field.
Here,
Conclusion:
Substitute
Thus, the value of
(b)
The wave number of the wave.
(b)

Answer to Problem 83PQ
The wave number of the wave is
Explanation of Solution
Write the expression for the wave number of the wave.
Here,
Conclusion:
Substitute
Therefore, the wave number of the wave is
(c)
The angular frequency of the wave.
(c)

Answer to Problem 83PQ
The angular frequency of the wave is
Explanation of Solution
Write the expression for the angular frequency of the wave.
Here,
Conclusion:
Substitute
Thus, the angular frequency of the wave is
(d)
The plane in which electric field oscillates.
(d)

Answer to Problem 83PQ
The electric field oscillates in the
Explanation of Solution
Since, the electric field is directed in the
(e)
The average value of the Poynting vector.
(e)

Answer to Problem 83PQ
The average value of Poynting vector is
Explanation of Solution
Write the expression for the average value of Poynting vector.
Here,
Conclusion:
Substitute
Thus, the average value of Poynting vector is
(f)
The pressure exerted by the wave on a lightweight solar sail.
(f)

Answer to Problem 83PQ
The pressure exerted by the wave on the solar sail is
Explanation of Solution
Write the expression for the pressure exerted by the wave on lightweight solar sail.
Here,
Conclusion:
Substitute
Thus, the pressure exerted by the wave on the solar sail is
(g)
The acceleration of the solar sail.
(g)

Answer to Problem 83PQ
The acceleration of the solar sail is
Explanation of Solution
Write the expression for the acceleration of the solar sail.
Here,
Write the expression for the area of the sail.
Conclusion:
Substitute
Thus, the acceleration of the solar sail is
Want to see more full solutions like this?
Chapter 34 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





