Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 81P
To determine
To show that electrons recoil angle is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sodium atom in one of the states labeled “Lowest excited levels” in Fig. remains in that state, on average, for 1.6 * 10-8 s before it makes a transition to the ground state, emitting a photon with wavelength 589.0 nm and energy 2.105 eV. What is the uncertainty in energy of that excited state? What is the wavelength spread of the corresponding spectral line?
X rays of wavelength 0.0100 nm are directed in the positive direction of an x axis onto a target containing loosely bound electrons. For Compton scattering from one of those electrons, at an angle of 180°, what are (a) the Compton shift, (b) the corresponding change in photon energy, (c) the kinetic energy of the recoiling electron, and (d) the angle between the positive direction of the x axis and the electron’s direction of motion?
In a photoelectric effect experiment, it is found
that no current flows unless the incident light has
a wavelength shorter than 359 nm nm.
What stopping potential will be needed to halt the
current if light of 225 nm falls on the surface?
Express your answer with the appropriate units.
μA
2.249
V
Vo
=
Chapter 34 Solutions
Essential University Physics (3rd Edition)
Ch. 34.2 - Prob. 34.1GICh. 34.3 - If you replot Fig. 34.7 for a material with a...Ch. 34.3 - Prob. 34.3GICh. 34.4 - Prob. 34.4GICh. 34.5 - Prob. 34.5GICh. 34.6 - Prob. 34.6GICh. 34 - Prob. 1FTDCh. 34 - Prob. 2FTDCh. 34 - Prob. 3FTDCh. 34 - Prob. 4FTD
Ch. 34 - Prob. 5FTDCh. 34 - Prob. 6FTDCh. 34 - Prob. 7FTDCh. 34 - Prob. 8FTDCh. 34 - Prob. 9FTDCh. 34 - Prob. 10FTDCh. 34 - Prob. 11FTDCh. 34 - Prob. 12FTDCh. 34 - Prob. 13FTDCh. 34 - Prob. 14FTDCh. 34 - Prob. 15ECh. 34 - The surface temperature of the star Rigel is 104K....Ch. 34 - Prob. 17ECh. 34 - Prob. 18ECh. 34 - Prob. 19ECh. 34 - Prob. 20ECh. 34 - Prob. 21ECh. 34 - Prob. 22ECh. 34 - Prob. 23ECh. 34 - Prob. 24ECh. 34 - Prob. 25ECh. 34 - Prob. 26ECh. 34 - Prob. 27ECh. 34 - Prob. 28ECh. 34 - Prob. 29ECh. 34 - Prob. 30ECh. 34 - Prob. 31ECh. 34 - Prob. 32ECh. 34 - Prob. 33ECh. 34 - Prob. 34ECh. 34 - Prob. 35ECh. 34 - Prob. 36ECh. 34 - Prob. 37ECh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73PCh. 34 - Prob. 74PCh. 34 - Prob. 75PCh. 34 - Prob. 76PCh. 34 - Prob. 77PCh. 34 - Prob. 78PCh. 34 - Prob. 79PCh. 34 - Prob. 80PCh. 34 - Prob. 81PCh. 34 - Prob. 82PCh. 34 - Prob. 83PCh. 34 - Prob. 84PPCh. 34 - Prob. 85PPCh. 34 - Prob. 86PPCh. 34 - Prob. 87PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light of wavelength 350 nm falls on a potas- sium surface, and the photoelectrons have a maximum kinetic energy of 1.3 eV. What is the work function of potassium? The speed of light is 3 × 10° m/s and Planck's J.s. -34 constant is 6.63 × 10° Answer in units of eV. What is the threshold frequency for potas- sium? Answer in units of Hz.arrow_forwardA photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forwardA photon of wavelength 2.0 nm Compton-scatters from an electron at an angle of 90°. What is the modified wavelength and the fractional change, ∆λ/λ ?arrow_forward
- ▼ In a photoelectric-effect experiment, the stopping potential is 1.37 V if the light used to illuminate the cathode has wavelength 475 nm. Find the work function (in eV) of the cathode material. Express your answer in electron volts. φ= Submit Part F 15. ΑΣΦ Vo = Request Answer μA Find the stopping potential if the wavelength is decreased to 425 nm. Express your answer with the appropriate units. Value Submit Request Answer P Units ? 599 eV ?arrow_forwardUsing the average speed of a gas, (8?????)1/2, determine the average de Broglie wavelength for an He atom at 25 °C and at 500 °C.How fast would the He atom need to travel in order to have the same linear momentum as a 500 nm photon?arrow_forwardThe distance between atoms in a crystal of NaCl is 418.5 nm. The crystal is being studied in a neutron diffraction experiment. At what speed (in m/s) must the neutrons be moving so that their de Broglie wavelength is the same length as the spacing between the atoms? (Assume the neutrons are non-relativistic.)arrow_forward
- Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forwardThe electron beam in a scanning electron microscope (SEM) can have an energy ranging from 0.2 keV to 40 keV. (Note: an eV is an electronvolt, the measure of an amount of kinetic energy for a single electron. 1 eV = 1.60218×10−19 J and 1 J = 1 kg m2 s−2). What is the de Broglie wavelength of the electron beam in the SEM when the electrons are accelerated to kinetic energy of 6.6 keV?arrow_forward1.2. When a photoelectric cell with a copper cathode is illuminated by a Hg arc lamp, with wavelength 245 nm, the reverse potential across the cell (i.e. the voltage that just stops the fastest emitted electrons) is measured to be 0.181 V. Calculate the work function and threshold frequency of copper.arrow_forward
- Light of wavelength 350 nm falls on a potassium surface, and the photoelectrons have amaximum kinetic energy of 1.3 eV.What is the work function of potassium?The speed of light is 3 × 108 m/s and Planck’sconstant is 6.63 × 10−34 J · s.Answer in units of eV. What is the threshold frequency for potassium?Answer in units of Hz.arrow_forwardWPS Office ASSIGNMENT 2.pdf + Sign in O Go Premium = Menu v Home Insert Comment Edit Page Protect Tools 1. The photoelectric threshold wavelength of a tungsten surface is 270 nm. Calculate the maximum kinetic energy (in eV) of the electrons ejected from this tungsten surface by ultraviolet radiation of frequency 1.45 x 1015 Hz. K 2. What would the min. work function for a metal have to be for visible light (380–750 nm) to eject photoelectrons? B 3. The cathode-ray tubes that generated the picture in early color televisions were sources of X-rays. If the acceleration voltage in a television tube is 15 kV, what are the shortest- wavelength x-rays produced by the television? 4. (a) What is the minimum potential difference between the filament and the target of an x- ray tube if the tube is to produce x-rays with a wavelength of 0.16 nm? (b) What is the shortest wavelength produced in an x-ray tube operated at 30 kV? 3E 5. A laser produces light of wavelength 620 nm in an ultrashort pulse.…arrow_forward1.3. A photoelectric cell has a cutoff wavelength, λc, of 262.7 nm. ☹ (a) What is the work function of the cell? (b) What current would be produced by the cell if the wavelength was increased to 300 nm? 400 nm? 500 nm? (c) What stopping voltage Vo would be required if the illuminating wavelength were to be reduced to 200 nm? (d) What would be the maximum kinetic energy of the photo-electrons in the case of 200 nm illumination? ¹February 28, 2024 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON