Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 63P
To determine
The energy required to ionize the hydrogen atom from first excited state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The energy difference between the 1st excited state (n = 2) and the 2nd
excited state (n = 3) in the hydrogen atom is 1.9 eV, what is the
wavelength of the emission line resulting from the electron transitions
between those two levels?
Give your answer in units of nanometers (nm).
What is the final energy state of an H atom that transitions from the n=4 state and emits a photon with λ = 1.875 μm?
n = 2
n = 1
n = 3
How many revolutions does the electron in the hydrogen atom in the ground state make per second?
(h = 6.63x10 Js, mass of clectron = 9.11x101 kg, Bohr radius = 0.053 nm.)
A- 6.55x1015
B- 3.28x1015
C- 3.28x10
D- 1.64x105
E- 9.11x105
The ionisation energy of the hydrogen atom is 13.6 eV. If hydrogen atoms in the ground state absorb
quanta of encrgy 12.75 eV, how many discrete spectral lines will be emitted as per Bohr's theory?
A- 1
В-2
С-4
D- 6
E- zero
The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of
the following statements is true?
A- Its kinetic energy increases and its potential and total energies decrease.
B- Its kinetic energy decreases, potential energy increases and its total energy remains the same.
C- ts kinetic and total energies decrease and its potential energy increases.
D- Its kinetic, potential and total energies decrease.
An electron in a Haydrogen atom undergoes a transition from the state n = 4 to n = 2. The energy…
Chapter 34 Solutions
Essential University Physics (3rd Edition)
Ch. 34.2 - Prob. 34.1GICh. 34.3 - If you replot Fig. 34.7 for a material with a...Ch. 34.3 - Prob. 34.3GICh. 34.4 - Prob. 34.4GICh. 34.5 - Prob. 34.5GICh. 34.6 - Prob. 34.6GICh. 34 - Prob. 1FTDCh. 34 - Prob. 2FTDCh. 34 - Prob. 3FTDCh. 34 - Prob. 4FTD
Ch. 34 - Prob. 5FTDCh. 34 - Prob. 6FTDCh. 34 - Prob. 7FTDCh. 34 - Prob. 8FTDCh. 34 - Prob. 9FTDCh. 34 - Prob. 10FTDCh. 34 - Prob. 11FTDCh. 34 - Prob. 12FTDCh. 34 - Prob. 13FTDCh. 34 - Prob. 14FTDCh. 34 - Prob. 15ECh. 34 - The surface temperature of the star Rigel is 104K....Ch. 34 - Prob. 17ECh. 34 - Prob. 18ECh. 34 - Prob. 19ECh. 34 - Prob. 20ECh. 34 - Prob. 21ECh. 34 - Prob. 22ECh. 34 - Prob. 23ECh. 34 - Prob. 24ECh. 34 - Prob. 25ECh. 34 - Prob. 26ECh. 34 - Prob. 27ECh. 34 - Prob. 28ECh. 34 - Prob. 29ECh. 34 - Prob. 30ECh. 34 - Prob. 31ECh. 34 - Prob. 32ECh. 34 - Prob. 33ECh. 34 - Prob. 34ECh. 34 - Prob. 35ECh. 34 - Prob. 36ECh. 34 - Prob. 37ECh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73PCh. 34 - Prob. 74PCh. 34 - Prob. 75PCh. 34 - Prob. 76PCh. 34 - Prob. 77PCh. 34 - Prob. 78PCh. 34 - Prob. 79PCh. 34 - Prob. 80PCh. 34 - Prob. 81PCh. 34 - Prob. 82PCh. 34 - Prob. 83PCh. 34 - Prob. 84PPCh. 34 - Prob. 85PPCh. 34 - Prob. 86PPCh. 34 - Prob. 87PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For an electron in a hydrogen atom in the n=2 state, compute: (a) the angular momentum; (b) the kinetic energy; (c) the potential energy; and (d) the total energy.arrow_forwardIf an atom has an election in the n = 5 state with m = 3, what are the possible values of l?arrow_forwardWhat is the maximum kinetic energy of an electron such that a collision between the electron and a stationary hydrogen atom in its ground state is definitely elastic?arrow_forward
- A beryllium ion with a single electron (denoted Be3+) is in an excited state with radius the same as that of the ground state of hydrogen. (a) What is n for the Be3+ ion? (b) How much energy in eV is needed to ionize the ion from this excited state?arrow_forwardWhat is the radius of a hydrogen atom when the electron is in the first excited state?arrow_forwardA hydrogen atom is placed in a magnetic field. Which of the following quantities are affected? (a) total energy; (h) angular momentum; (c) z-component of angular momentum; (d) polar angle.arrow_forward
- Explain how a hydrogen atom in the ground state (l = 0) can interact magnetically with an external magnetic field.arrow_forwardIt has been measured that it required 0.850 eV to remove an electron from the hydrogen atom. In what state was the atom before the ionization happened?arrow_forwardExplain why spectral lines of the hydrogen atom are split by an external magnetic field. What determines the number and spacing of these lines?arrow_forward
- A hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n = 3. What is the energy of the absorbed photon?arrow_forwardA hydrogen atom is in the ground state. It absorbs energy and makes نقطة واحدة a transition to the n = 3 excited state. The atom returns to the ground state by emitting two photons. What are their ?wavelengths None of these O 5.66x10^-7 m and 2.12x10^-7 m O 6.65×10^-7 m and 2.21×10^-7 m 6.56×10^-7 m and 1.22×10^-7 m Oarrow_forwardA hydrogen atom in its ground state absorbs a photon of wavelength 102.5 nm. What is the principal quantum number (n) of the electron after absorbing the photon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning